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CONSISTENT TESTS FOR STOCHASTIC DOMINANCE

BY GARRY F. BARRETT AND STEPHEN G. DONALD!

Methods are proposed for testing stochastic dominance of any pre-specified order, with
primary interest in the distributions of income. We consider consistent tests, that are similar
to Kolmogorov-Smirnov tests, of the complete set of restrictions that relate to the various
forms of stochastic dominance. For such tests, in the case of tests for stochastic dominance
beyond first order, we propose and justify a variety of approaches to inference based
on simulation and the bootstrap. We compare these approaches to one another and to
alternative approaches based on multiple comparisons in the context of a Monte Carlo
experiment and an empirical example.
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1. INTRODUCTION

RECENT WORK ON INEQUALITY and poverty analysis has emphasized the impor-
tance of various forms of stochastic dominance relationships between income
distributions. In particular Anderson (1996) and Davidson and Duclos (2000)
have discussed the importance of the concepts of first, second, and third order
stochastic dominance (SD1, SD2, and SD3 respectively) relationships between
income distributions for social welfare and poverty rankings of distributions.?
These papers have considered the problem of making inferences regarding var-
ious forms of stochastic dominance by comparing objects (usually the income
distribution itself or partial integrals thereof) at an arbitrarily chosen and fixed
number of income values. Anderson (1996) proposed tests for the various
forms of stochastic dominance based on ¢-statistics comparing the objects cal-
culated in two independent samples, while Davidson and Duclos (2000) sug-
gested an approach based on tests of inequality constraints.’> A key merit of these
approaches is their practicality, since they are based on a small number of com-
parisons. However, as noted by Davidson and Duclos (2000, p. 1446), the fact
that the comparisons are made at a fixed number of arbitrarily chosen points
is not a desirable feature, and introduces the possibility of test inconsistency.
A more desirable approach would be based on comparison of the objects at all
points in the support of income.

! We thank Ken Zhu for excellent research assistance, and a co-editor and three anonymous ref-
erees for constructive comments and suggestions. The first author thanks the Australian Research
Council for support and the second author acknowledges the support of an Alfred P. Sloan Founda-
tion Fellowship and NSF Grant SES-0196372.

2 Also note that Shorrocks (1983) has shown that second order dominance is equivalent to gener-
alized Lorenz dominance. See Lambert (1993) for a nice exposition of this result.

3 In Davidson and Duclos (2000) the tests for various forms of stochastic dominance are a prelude
to estimating the smallest income level at which the distributions (or integrals thereof) cross.
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The aim of this paper is to consider tests of stochastic dominance of any pre-
specified order that are based on Kolmogorov-Smirnov type tests that compare
the objects at all points. The objects being compared are multiple partial inte-
grals of some underlying income distribution, and since the objects are being
compared at all points in the income range the tests have the potential to be
consistent tests of the full set of restrictions implied by stochastic dominance. In
contrast, tests based on a fixed number of comparisons are potentially inconsis-
tent since only a subset of the restrictions implied by stochastic dominance are
considered. Although the Kolmogorov-Smirnov type tests are based on a com-
parison at all income values, the exact value of the statistics can be calculated
exactly with a finite number of calculations and so the tests should be useful in
practice. In the case of first and second order stochastic dominance, McFadden
(1989) has considered the use of such tests with independent samples with equal
numbers of observations. Unlike McFadden (1989) we allow for different sam-
ple sizes and we also consider tests for stochastic dominance of any pre-specified
order, say SDj. The main difficulty with the tests, as noted by McFadden (1989),
is in constructing appropriate rejection regions for conducting the tests, since
the test statistics for testing SDj for j larger than 1 (i.e. SD2, SD3, and so on)
have limiting distributions that depend on the underlying distributions. McFad-
den (1989) proposed a Monte Carlo based method to estimate an approximate
asymptotic significance level (or p-value). In our case we also use a variety of
simulation and bootstrap methods to estimate the exact asymptotic p-value, and
are able to show that these methods can be theoretically justified. In addition we
show that the methods give rise to tests with desirable size and power properties
in finite samples.*

Other papers have considered the problem of testing for SD2 and have
attempted to deal with the difficulty of conducting inference in a variety of ways.
Schmid and Trede (1998) have proposed a test for SD2, for which critical values
can be obtained, but require that one of the distributions be known and have a
density that is monotonically decreasing. This would seem to be unsatisfactory in
general and in particular would seem to rule out applications to income distribu-
tions. Kaur, Prakasa Rao, and Singh (1994) proposed a test of SD2 that has the
advantage of giving rise to a test statistic with a standard limiting distribution.
While much of the literature formulates the null hypothesis as corresponding to
SD2, they do not; they have the alternative hypothesis as being one of strong SD2
and the null being the converse. Therefore it is possible to have a distribution
dominate another distribution (in a second order sense) almost everywhere and
to fail to reject the null hypothesis. Another alternative, proposed by Eubank,
Schechtman, and Yitzhaki (1993), tests a necessary condition for SD2 and also
does not test a null hypothesis that corresponds directly to SD2.

The remainder of the paper is structured as follows. In Section 2 we give a
statement of the testing problems and provide a characterization of the limiting

* The authors have written Gauss procedures that allow one to compute the test statistics and to
obtain p-values. These are available on the authors’ websites.
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distributions of the test statistics under the null hypothesis in terms of well known
stochastic processes. Additionally in Section 2, we provide critical values for SD1
tests. In Section 3 we present a variety of simulation and bootstrap methods for
computing p-values for testing SDj with j larger than 1, and give a theoretical
justification for the methods. Section 4 considers a variety of approaches that
are based on using a fixed number of comparisons. In Section 5 we conduct a
small scale Monte Carlo experiment to examine the usefulness of the approach
in small samples and compare the approach based on KS type tests with methods
based on a fixed number of comparisons. In Section 6 we illustrate the methods
by comparing the Canadian income distributions for 1978 and 1986. Section 7
offers concluding remarks.

2. HYPOTHESES, TEST STATISTICS AND LIMITING DISTRIBUTIONS
2.1. Stochastic Dominance and Hypothesis Formulation

We focus on a situation in which we have independent samples of income
(or some other measure of individual welfare) with possibly different sample
sizes, from two populations that have associated cumulative distribution functions
(CDFs) given by G and F. Stochastic dominance is closely related to social wel-
fare comparisons as shown, for example, in Deaton (1997). In particular (weak)
first order stochastic dominance (hereafter SD1) of G over F corresponds to
G(z) < F(z) for all z. As noted by Deaton (1997), when this occurs social welfare
in the population summarized by G is at least as large as that in the F popu-
lation for any social welfare function of the form W(H) = [U(z) dH (z) where
H is the distribution of income and U is any increasing monotonic function of
z—i.e. U’(z) > 0. On the other hand (weak) second order stochastic dominance
(SD2) of G over F corresponds to [; G(t)dt < [; F(t)dt for all z and has the
implication that the social welfare in the population summarized by G is at least
as large as that in the F population for any social welfare function of the form
W (H) where U is monotonically increasing and concave—that is U’(z) > 0 and
U’"(z) <0. Finally, (weak) third order stochastic dominance (SD3) of G over F
corresponds to i [, G(t)dtds < [; [, F(t)dtds for all z and has the implication
that the social welfare in the population summarized by G is at least as large
as that in the F population for any social welfare function of the form W (H)
where U satisfies U'(z) >0, U"(z) <0, and U"(z) > 0.5

It is convenient notationally to represent the various orders of stochastic dom-
inance using the integral operator, .%,(.; G), to be the function that integrates
the function G to order j—1 so that, for example,

J1(z; G) =G(2),

3 The correspondence between SD and the properties of the social welfare function W (H) extend
to any order of SD. That is, SD of order j is equivalent to the quasi-ordering induced by W (H)
where U satisfies the set of conditions (—=1)¥-U® <0 fork=1,...,].
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9,(z; G) =/ G(t) dt =f 9,(t; G) dt,
0 0

e G):/OZ /(:G(s)dsdtzfozjz(t; G)dt,

and so on. It is well known that there is a one way relationship between the
different forms of stochastic dominance as suggested not only by the functions
that are being compared but also by their implications for social welfare. In
particular SDj implies SD(j + 1)—there is not necessarily a converse relationship.

The preceding discussion is suggestive of hypotheses that could be tested for
the various forms of stochastic dominance. Before doing so, and in order to be
precise we make the following assumption regarding the two distributions F and
G.

ASSUMPTION 1: Assume that:
(i) F and G have common support [0, Z | where Z < oo;
(ii) F and G are continuous functions on [0,z ].

In the context of income distributions it seems natural to have the lower bound
on the support of the distribution be equal to zero. The results of the paper do
extend to situations where the lower bound is any finite number. Additionally we
do not require that any (measurable) set with positive Lebesgue measure have
strictly positive probability under either F or G. Thus for instance we allow for
the possibility that either F(z) =0 (or G(z) =0) for z > 0. It does appear to be
crucial for testing SDj with j > 2 that z be finite. This is required because without
this the multiple integrals of the CDFs in this case will be infinitely large. If this
assumption appears unreasonable, then the tests can be thought of as testing the
full implications of stochastic dominance on a compact set.

Given our assumptions on the underlying distributions we now state the
hypotheses that relate to the various forms of stochastic dominance that we con-
sider. The general hypotheses for testing stochastic dominance of order j can be
written compactly as

H[{: Ji(z;G) < F(z; F) forall z €0, 2],
Hi: Ji(z; G) > J;(z; F) for some z € [0, Z].

The way that we have formulated the hypotheses is the same as in McFadden
(1989) and much of the literature that has considered stochastic dominance. An
exception in the case of SD2 is Kaur, Prakasa Rao, and Singh (1994) who (in
a sense) reverse the roles of the hypotheses and have the alternative hypothesis
as corresponding to strong second order dominance with the null being the con-
verse. In such tests the situation where G dominates F (in a second order sense)
at all but one point cannot be distinguished from the case where F and G are
identical. On the other hand Eubank, Schechtman, and Yitzhaki (1993) test a
necessary (but not sufficient) condition for SD2.
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We should note that weak stochastic dominance (of whatever order) of G over
F implies that G is no larger than F (or for second and third order the integrals
of these objects) for any value of income—this includes the case where the dis-
tributions are equal everywhere. Therefore the null hypotheses are composite in
the sense that they are true for many different G functions (with F fixed). The
alternative hypothesis in each case is simply the converse of the null and implies
that there is at least some income value at which G (or its integral) is strictly
larger than F (or its integral). In other words stochastic dominance fails at some
point. As formulated, one can in principle distinguish between the case where
F and G coincide and the case where G dominates F (in whatever sense) by
reversing the roles they play in the hypotheses and redoing the tests. Also note
that as stated we consider all values of z € [0, z ] the common support of incomes.
All of our results can be extended to the case where we compare the objects for
any (common) compact subinterval of income values. Such an approach may be
useful in the context of poverty comparisons where one focuses on the welfare
of the “poor”—see Davidson and Duclos (2000).

2.2. Test Statistics and Asymptotic Properties

In this paper we consider the case where we have independent samples from
the two distributions discussed in the previous section. Since we will be allowing
for different sample sizes we need to make assumptions about the way in which
sample sizes grow. The following gives our assumption on the sampling process.

ASSUMPTION 2:

(i) {X}Y, and {Y;}), are independent random samples from distributions with
CDF’s F and G (respectively);

(ii) the sampling scheme is such that as N, M — o, N/(N + M) — A where
O<A<l.

Assumption 2(i) concerns the sampling scheme and would be satisfied if one
had samples of incomes (or some other measure of well being) from different
segments of a population or separate samples across time.> Note Assumption
2(ii) implies that the ratio of the sample sizes is finite and bounded away from
zero. Throughout the paper all limits are taken as N and M grow in such a way
that Assumption 2(ii) holds.

The empirical distributions used to construct the tests are respectively,

- 1 N R 1 M
Fy(z)= - 2 1(X; =2), Gy(z)=—2 1(Y;=2).
N M3
The test statistics for testing the hypotheses can be written compactly using the
integration operator as follows:
P NM
S. =
7 A\N+M

-~ o~

)1/2 sgp(jj(z; Gy)—9(z; Fy))-

% Also, for technical reasons the samples are from distributions on a measurable space (%, 5{).
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The operator .7; is a linear operator and one can show that

(1) Ii(z; Fy) = %ijj(z; 1y)
1Y 1 -
= N;ml()(i <z)(z— X))

where the second line follows from Davidson and Duclos (2000) using the nota-
tion 1y, to denote the function 1(X; < x). Thus the above statistics can be com-
puted quite simply.

We will be characterizing the limiting distributions of the test statistics under
the null hypothesis using the fact that

VN(Fy—F)= B,0F, ~NM(Gy—G)= %50G

where %o F and %o G are independent Brownian Bridge processes.” The
following result proves useful in characterizing the behavior of the test statistics
and concerns the asymptotic properties of the process that involves integrals of
the Brownian Bridges.

LEMMA 1: Under Assumption 1 we can show that for j > 2,
VN(5,(:; Fy) = 9(s F)) = 3,(; BpoF)

in C([0,z]) (the space of continuous functions on [0, Z ) where the limit process
is mean zero Gaussian with covariance kernel given by (for z, > z;)

Q4(z1, 253 F) = E(I;(2,; Bp o F).9(25; Br o F))
j-1

i1
= Zefﬁ(zz—%)ljzpzfl(zﬁ F)—J(z,; F).9;(25; F)
=0

where
i (2j—1-2
2) 01_< i-1 .

Note that a corresponding result holds for the process indexed by G. The result
in Lemma 1 is an extension of the result in Theorem 1 of Davidson and Duclos
(2000) to the functional case. In addition the result provides an explicit form for

7 Technically we have joint convergence. This type of result can be shown either using Billingsley
(1968) or the recent approach outlined in Van der Vaart and Wellner (1996) to show marginal
convergence for each process and then using Theorem 1.4.8 of Van der Vaart and Wellner (1996),
which shows that since the processes %, o F and % o G are separable joint convergence is equivalent
to marginal convergence of each process. It is also straightforward to show that each empirical CDF
converges jointly and uniformly to the corresponding population CDF.
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the covariance kernel in terms of the coefficients 6, and the integration operators
that is useful in what follows. The latter was derived using the representation in
(1) and the binomial theorem.®

We consider tests based on a decision rule of the form

“reject Hj if S;> ¢,”

where ¢ is some critical value that will be discussed later. It is convenient to
define the following random variables:’

SF=sup.,(z; BroF),

S = sup(VAF,(2; B 0 G) —VI—A5,(2; By o F)).

J

The following result characterizes the properties of these tests.

PROPOSITION 1: Given Assumptions 1, 2, and that c; is a positive finite con-
stant, then:
(A)() if H} is true,

N’I}JnlmP(reject Hé) < P(ng > ¢;) = ap(c;),

with equality when F(z) = G(z) for all z € [0,z ];
(A)(ii) if H; is true,

Nyl}{n_lmP(reject H)) < P(S7" > ¢)) = ag s (c)),

with equality when F(z) = G(z) forall z € [0, z];
(B) if Hy is false,

N,ljbnimP(reject H})=1.

The result provides two random variables that dominate the limiting random
variables corresponding to the test statistic under the null hypothesis. The first
is of a simpler form but is harder to prove than the second, which is of a more
complicated form. The proof of A(i) involves characterizing the distribution of
the test statistic and then using the covariance structure shown in Lemma 1
to prove an inequality involving suprema of Gaussian random variables with a
certain covariance structure. One can show the result in A(i) holds for SD1
using the finite sample monotonicity of the power function under transformations
from a random variable with a distribution G to another random variable with

8 We thank a referee for suggesting the proof that followed from this approach.
% For instance, S¥ = sup, [*_ B(F(t)) dt.
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distribution G* where G first order stochastically dominates G*.'° The finite
sample power function for testing SDj for j > 2 is also monotonic under such
transformations, but is not monotonic for transformations from one distribution
to another that it dominates to an order that is higher than one. Therefore the
asymptotic approach is required.!!

The two random variables will coincide under the null when the distribu-
tions coincide. The inequalities in A(i) and A(ii) imply that the tests will never
reject more often than ap(c;) (respectively ag r(c;)) for any G satisfying the
null hypothesis. As noted in the result, when F = G the probability of rejec-
tion will asymptotically be exactly ar(c;) (respectively ag r(c;)) and, moreover,

ap(c;) = ag p(c;) because of the fact that KJG’F 2 §]F (see Shorack and Well-
ner (1986) for instance). It is also interesting to note that if .7,(z; G) < .%,(z; F)
for all z above inf,{z: F(z) > 0} (which under the null hypothesis must be no
larger than inf,{z : G(z) > 0} for any order) then asymptotically the probability
of rejection will be zero. The results in A(i) and A(ii) imply that if one could
find a c; to set the ar(c;) (respectively ag r(c;)) to some desired level (say 0.05
or 0.01) then this would be the significance level for composite null hypotheses
in the sense described in Lehmann (1986). Moreover, the result in B implies that
the tests are capable of detecting any violation of the full set of implications of
the null hypothesis.

In order to make the result operational we need to find, in each case, an
appropriate critical value, say c;, to satisfy P(flf >c¢;)=aor P(ij’F >¢;) =a.
As has been noted elsewhere (see McFadden (1989), for instance) however, this is
only easily done in the case of SD1 tests for the limiting random variable in A(i).
Since first order stochastic dominance is invariant to monotone transformations

one can show that!?
(3) P(Sf >c)= P( sup B(p) > c) = exp(—2¢?).
pe(0,1]

Thus one can either compute a p-value by exp(—2(§1)2) or else critical values
can be obtained by inversion using ¢, (@) = (—31 log &)"/%. Some important criti-
cal values are 1.073, 1.2239, and 1.5174 for the 10%, 5%, and 1% levels of sig-
nificance respectively. The characterization in A(ii) is less useful in the case of
SD1 because in general the distribution of S will depend on F and G and
although the simulation methods proposed in the next section can be used to

0By this we mean that if Y, ~ G and G(z) < G*(2) for all z, then Y7 = G*'(G(Y;)) ~ G* and
Y* <Y, and the test statistic based on the Y;* will be at least as large as that based on Y;. See Randles
and Wolfe (1979, Theorem 4.3.3) for instance.

' To the best of our knowledge a result such as A(i) for SDj with j > 2 has always been stated with-
out proof or else ignored—see McFadden (1989, p. 121) and Schmid and Trede (1998, pp. 185-186)
for instance.

12 gee Billingsley (1968, p. 85) for details. Note that the asymptotic distribution implied by equa-
tion 6 of McFadden (1989) differs from that presented here and appears to be due to a typographical
erTor.
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obtain approximate p-values, there seems little point when one already has an
alternative with an analytic asymptotic distribution.

For testing orders of dominance beyond the first the distribution of the test
statistics will depend on the underlying CDFs. In particular ff will depend on
F while EG’F will depend on both G and F. The approach taken in this paper
is to use simulation methods as well as bootstrap methods to simulate p-values.
Because of the fact that in general one cannot compare the random variables S; S
and SG (except in the case G = F) one cannot tell a priori which bound w111
result in a better test in terms of power as well as size. This will be addressed
when we examine the performance of the various tests in the context of a Monte
Carlo experiment. Finally, before proceeding, we note that the bound based on
EF is of a simpler form and that performing inference based on this bound will

be less demanding computationally and that one can potentially test H(f with F
fixed for a number of other distributions using one set of simulations.

3. SIMULATING p-VALUES
3.1. Multiplier Methods

In this section we consider the use of a simulation or Monte Carlo method
for conducting inference for the tests that is similar to that used in Hansen
(1996). It involves the use of artificial random numbers and exploits the multiplier
central limit theory discussed in Van der Vaart and Wellner (1996) to simulate
a process that is identical to but (asymptotically) independent of ZB(F(z)). To
do this let {Uf}Y, denote a sequence of i.i.d. N(0,1) random variables that are
independent of the samples. We denote the simulated process by the notation
B oFN and use the notation %% (z; FN) to be the process %3 oFN evaluated at
the point z € [0, Z]. Then the process is generated by letting

(4) By (z; FN) (X, <z)— FN(Z))

v
We can similarly define a simulated version of the Brownian Bridge correspond-
ing to G using an independent set of draws (say {U}Y, with US ~ i.i.d. N(0, 1))
and we denote the process by ¢ o G - The method for doing inference consists
of obtaining p-values from appropriate functionals of the simulated processes.
These p-values can be obtained using either of the following two calculations
that correspond respectively to Proposition 1A(i) and Proposition 1A(ii):

(5) Pl =Py (sup I,(2; By o Fy) > S),
©  p=p <sup(ﬂjj(z; B0 Gu) —V1-19,(z: B0 Fy) ) > §,>

13We note that the subscripts on %; and %, indicate the fact that different and independent
normal random variables are used for each process.
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where Py (.) is the probability function associated with the normal random vari-
ables Ul (and UF in the case of the second result) and is conditional on the
realized sample(s). Note that these p-values depend on the sample sizes N and
M although we have suppressed the dependence for notational convenience. The

following result provides a justification for this approach.

PROPOSITION 2: Given Assumptions 1, 2 and assuming that a < 1/2, a test for
SDj based on either the rule

“reject Hy if pj <a”
or

. i ., AF.G
“reject Hj if p;’” <a”

satisfies the following:
lim P(reject H)) <a for F,G satisfying Hj,
lim P(reject H)) =1 for F,G satisfying Hi.

The p-value method can be justified by showing that these simulated processes
converge weakly (almost surely)!* to identical independent copies of the respec-
tive Brownian Bridge and by an application of the continuous mapping theorem,
which shows that we have simulated copies of the bounding random variables
that appear in Proposition 1. The result is obtained in a manner that is similar
to a part of the proof of Theorem 2 of Hansen (1996). The main difference is
that in our case we must deal with the fact that we have a one sided compos-
ite null and the fact that the test statistic may have a degenerate distribution at
zero for some cases satisfying the null hypothesis. The result implies that a test
based on the decision rule “reject SDj if p; < a” will reject a true null hypothe-
sis with probability that is (asymptotically) no larger than «. The probability will
be (asymptotically) equal to a when in fact F = G (in which case the inequalities
in the statement of Proposition 1 hold with equality).

In order to compute the p-values in practice we must deal with the fact that
the probabilities in (5) and (6) must be calculated and that the suprema that
define the relevant random variables must be calculated. As suggested by Hansen
(1996) we use Monte-Carlo methods to approximate the probability and use
a grid to approximate the suprema. Since these are under the control of the
econometrician, one can make the approximations as accurate as one wants given
time and computer constraints.

14 We show weak convergence conditional on the original samples of observations on X and Y and
show that the convergence is for almost all samples. We call this weak convergence (almost surely).
In connection with the bootstrap we consider the concept of weak convergence (in probability) as
used in Hansen (1986). Formal definitions of these convergence notions are contained in Van der
Vaart and Wellner (1996).
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More specifically let {U/,}Y, {US}¥, denote the rth samples of U/ and U°
where we will let r =1, . R Where R will denote the number of replications
that will be used in the Monte Carlo simulation. Select a grid of values on [0, Z ]
suchas 0=1¢, <t <+ <tgx =2z, where K will denote the number of subintervals.
Using (1) we can approximate the rth realization of the statistic by

St = = max

Jr \/_Z(j (tk’lX) j(tk9FN)) i,r

Sro ax\/N—Mzmrk, 1)~ 5(t: ) U;

—(Fi(t; 1y,) — T4 FN))Ui,r)'

Then the p-values can be approximated by

e TE
M W= 2S5,
r=1

® =X -5),

As indicated by Hansen (1996), an appeal to the Central Limit Theorem suggests
that the error in approximating p; should have a standard error that is approxi-
mately no larger than (4R)~'/? so that if R =1000 (or say 10,000) for instance, the
standard error in this approximation is roughly 0.015 (or 0.005 when R = 10,000)
and much smaller in cases where p; is close to zero.

3.2. Bootstrap Methods

A natural alternative to the p-value simulation method is to conduct inferences
using a form of the bootstrap. A possible advantage of this is that, although exis-
tence of a limiting distribution (for the test statistic) is generally needed, one does
not necessarily need to be able to characterize it in the way that we were able
to in the previous section. Therefore the bootstrap may be applicable in more
complicated situations. As in the previous section we provide methods for boot-
strapping based on the results in Proposition 1A(i) and 1A(ii). The first method,
based on Proposition 1A(i), is to simulate the random variable corresponding to
S7.. In this case we define the sample as % = {X,,..., Xy} and compute the
distribution of the random quantity

) ST = VN sup(.5,(z; Fy) = .%;(z; Fy))
where

~ 1N
Fi(2) =5 XX} <2)
i=1
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for a random sample of X; drawn from %. To simulate the random variable
corresponding to f},c from Proposition 1A(ii) we follow Van der Vaart and
Wellner (1996) and resample from the combined samples. Define the combined
samples as Z={X,,..., Xy, Y;,..., Yy}. Let G}, denote the empirical CDF
of a random sample of size M from Z and let 1’5]\7 denote the empirical CDF of
an independently drawn random sample of size N from Z. Then compute the

distribution of the random quantity'

1) 5 = sup( (2 Gy) 7 )
One can justify a third method of bootstrapping by drgl\wing samples of size
N from % (with replacement) to construct an estimate Fy, and independently
drawing samples of size M from % to construct an estimate G}, and computing
the statistic

(1) 5= o up((7(z Gi) (2 Go)) (= )~ (5 F).

In each case we are interested in computing the probability that the random
variables exceed the value of the statistic given the respective samples. These can

be approximated by Monte Carlo simulation in a manner that is exactly analogous

to (7) and (8). Denote the respective p-values by the notation [Jf , 13]1.? ©, ﬁi .

The following result provides a justification for this approach.

PROPOSITION 3: Let Assumptions 1, 2 hold and assume that o < 1/2; then a
test for SDj based on any of the rules:

“reject H} if P <a”
“reject Hé if ﬁjF”lG <a,”
“reject H({ if ﬁf’zG <a,”
satisfies the following:
lim P(reject H)) <a if H} is true,

lim P(reject Hy) =1 if H] is false.

4. TESTS BASED ON MULTIPLE COMPARISONS

We can now contrast our approach with a variety of approaches based on
Anderson (1996) and Davidson and Duclos (2000). Defining 4;(z,) = .;(z;; G) —
J;(z;; F), the methods considered in Davidson and Duclos (2000) are designed

15 Abadie (2002) has considered the use of this method of bootstrapping for the case of SD1
and SD2. Maasoumi and Heshmati (2000) have also considered bootstrapping for similar tests of
stochastic dominance.



STOCHASTIC DOMINANCE 83

to test
Hj: Ai(z) <0 forallle{l,...,k},
H{: Ai(z;)) >0 forsomele{l,...,k},

where the subscript j indicates the order of stochastic dominance being tested.
It is clear that the hypothesis being tested only relates to dominance at a fixed
number of points and hence is different from the hypothesis tested in the previous
section. Nevertheless, these tests have been used to draw conclusions as to the
truth or falsehood of the hypotheses described in Section 2.1. However, tests
based on multiple comparisons will lack power in some situations since they
fail to examine all of the implications of stochastic dominance. Specifically, the
multiple comparisons tests will have low power where there is a violation of
the inequality in the null hypothesis on some subinterval lying between income
evaluation values—i.e. on some subinterval in (z,, z;,,)."°

Davidson and Duclos (2000) consider two types of tests. The first is essentially

a Wald test."” Define A; as the k vector of estimates of A;(z;) and !2 as the

estimate of the variance covariance matrix of Aj, then the Wald test can be
obtained by

W;=min|(4,—4)2;'(4,-4): A <0}.
AeRi
As has been shown in Wolak (1989) the Wald statistic has an asymptotic distri-
bution that is a mixture of chi-squared random variables. As with the consistent
tests proposed above, simulation is required in order for inference to be possible
unless k is small. In particular, one must compute the solutions to a large number
of quadratic programming problems in order to estimate the weights that appear
in the chi-squared mixture limiting distribution (see Wolak (1989, p. 213)).
A simpler approach to testing the hypotheses is to simply use the #-statistics
that have been calculated for testing whether each A;(z;) is zero against the
alternative that it is larger than zero. Let the individual -statistics be given by

fj(z,) = Zj(z,) / \/ 0 ;. u- A simple test can then be performed by rejecting the null
hypothesis if the largest ¢-statistic is large. Thus one could use the test statistic
SMT = max{7;(z,)} where the superscript MT indicates that this is a maximal
t-statistic. This is analogous to the KS type tests in the context of the simpler
hypotheses considered in this section. As noted by Davidson and Duclos (2000),
this statistic has a nonstandard distribution.!® Given that the Wald test considered

16 Indeed, it is also possible (although perhaps a somewhat perverse case) that F stochastically
dominates G (to whatever order) almost everywhere and to still have this implicit null hypothesis (in
terms of multiple comparisons) being true. This would occur if 4,(z;) =0 for all j and 4,(z) > 0 for
allz#£z;.

17 See also Kudo (1963), Perlman (1969), and Gourieroux, Holly, and Monfort (1982).

18 Anderson and Davidson and Duclos suggested using a conservative critical value from the stu-
dentized maximum modulus (SMM) distribution tabulated in Stoline and Ury (1979). This provides
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by Davidson and Duclos (2000) requires simulation for inference it only seems
fair to consider the possibility of simulating p-values for the maximal ¢ statistic
test. A simple procedure for simulating the p-value for the maximal ¢-statistic is
to use

1
=

|

R
X1 (max( 717, > 5)

where fjl/ * is the Cholesky decomposition of a consistent estimate of I'; (the
correlation matrix corresponding to {2;), Z; are multivariate standard normal
pseudo-random numbers that can be generated on a computer, R is the number
of random draws used to estimate the p-value and the max operator takes the
largest value in the vector fjl/ *Z.. Such an approach can be justified using the
arguments presented in Section 3.

The approach of Anderson (1996) is similar in spirit to the approach based
on the maximal ¢-statistic. One minor difference is that Anderson proposes esti-
mating the variance under the assumption that the A,(z;) are all zero. A more
important difference lies in the way that Anderson (1996) computes the Zj(z,)
for j =2, 3. In particular Anderson (1996) approximates the integrals that define
A(z;) (for j =2,3) by using an approximation (specifically a trapezoidal rule,
as in Goodman (1967)) of the integral of an approximation to the (differences
in the) empirical CDF. The method of Davidson and Duclos (2000) and the
method we have proposed in Section 2 are both based on integrating the empir-
ical CDF directly—which provides unbiased estimates. In contrast, the approx-
imations used in Anderson produce estimates at the evaluation points that are
potentially biased and inconsistent. Although these potential biases will generally
not lead one to reject a true null, they do introduce a further possibility that one
could fail to reject a false null hypothesis for orders of dominance beyond SD1.
It should be noted that conducting inferences for the Anderson tests is exactly
analogous to the case of the maximal ¢ statistic approach based on the David-
son Duclos (2000) calculations—one can obtain widely applicable conservative
critical values or simulate p-values.

Finally, we note that one possible advantage of the multiple comparisons
approach is that it may be easier to deal with dependent samples (as in before
tax and after tax income for the same set of individuals). This case is explicitly
allowed for in Davidson and Duclos (2000) by using an appropriate estimate 0 ;
in the quadratic programming problem that defines their test statistic. In justi-
fying the consistent approaches based on the bootstrap and simulation we have
assumed independent samples. Although we do not explore this issue here, we

critical values from the distribution of max; |Z;| over k independent N (0, 1) variables Z;. For the
one sided tests considered in this paper the distribution of max; Z; provides superior conservative
critical values (see Tong (1990, Exercise 6.22)) that can be calculated using ¢, = ®~!((1 — a)¥*) for
a test with significance level a.
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conjecture that in some situations it may be possible to adjust the procedures
suggested here so that they can be justified more generally.'

5. MONTE CARLO RESULTS

In this section we consider a small scale Monte Carlo experiment in which we
gauge the extent to which the preceding asymptotic arguments in Sections 2 and 3
hold in small samples. In addition we compare the tests proposed in Sections 2
and 3 (referred to as KS or Kolmogorov-Smirnov tests) with the other tests con-
sidered in Section 4. In a sense such a comparison is unfair because, as noted in
the previous section, the KS tests and the tests based on multiple comparisons
are testing different null hypotheses. In terms of the worth of the multiple com-
parison tests we would expect them to do well when the income values (at which
comparisons are made) are chosen so that the differences in the objects being
compared are representative of the overall ranking. One would expect the mul-
tiple comparison test to have good power (and indeed dominate the KS tests)
when the differences at the income values used are close to the largest overall
difference.?

We designed our experiment in an effort to mimic reality by using a class of
distributions with shapes similar to those that have been found to work well in
income distribution studies. In particular we used the log-normal distribution and
in each experiment generated the two samples using the following:

X;=exp(01Z; + ),
Y; = exp(0,Z,; + o),

where the Z,; and Z,; are independent N (0, 1) random variables; (i, w5, 0y, 0;)
are parameters that will be varied across the different experiments. Five different
cases were considered. Case 1 uses the values u, = u, =0.85 and o, = 0, = 0.6.”!
Our results suggest that if this is the case, then the tests (designed for a particular
nominal significance level) should reject the various null hypotheses with a rela-
tive frequency that is close to the nominal significance level. The extent to which

19 In particular, suppose for example that the two samples are matched pairs of individuals observed
before and after tax and one wanted to compare the before and after tax income distributions. Then
it may be possible to take account of this by using the second simulation approach and common
random variables for the two components, or by using the third bootstrap procedure and resampling
from the matched pairs rather than independently from the two sets of observations. As noted by
a referee, discontinuities in the distribution would also require a more delicate treatment of the
properties of the KS type tests than is provided in this paper.

20 This is similar to the situation of examining tests of parametric restrictions with nonparametric
alternatives. One would expect a test based on a parametric alternative to do better when the chosen
alternative is close to the truth. Nevertheless, given that the alternative is unknown in practice, the
lack of consistency of such tests is a cause for concern. In our case this would correspond to having
prior information as to the location of the largest difference between the objects being compared.

2l With this choice of parameters the variables X; and Y; have a mean of 2.8 and standard deviation
equal to 1.8, which implies a mean standard deviation ratio that is similar to that found in empirical
studies (see Table I of Anderson (1996), for instance).
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this is satisfied gives us an idea of the extent to which the asymptotic theory holds,
and the extent to which the p-value simulation and bootstrap methods work, in
small samples. The second case, Case 2, involves the specification u, = 0.6 and
0, = 0.8 with u; and o, being the same as in Case 1. With this specification all
three null hypotheses are false since there are regions of the support of the dis-
tributions over which the inequality in the null hypothesis is invalid. Case 3 has
t, =1.2 and 0, =0.2. In this case H; fails by a very small amount but both HZ
and H; are true so we should expect to reject SD1 but not reject SD2 or SD3.
For Case 4 Y is generated as a mixture of log-normal variables such that

Y =1(U; 2 0.1) exp(0,2Z5; + ) + 1(U; < 0.1) exp(03Z3; + p3)

where U, is a uniform [0, 1] random variable, Z,; and Z;; are independent stan-
dard normal random variables with u, =0.8, 0, =0.5, u; =0.9, and 05 =0.9. In
this case the relevant curves for SD1-SD3 exhibit a single crossing and hence all
of the null hypotheses are false. Finally, for Case 5 Y is also generated as a mix-
ture of log-normal variables with u, =0.85, 0, = 0.4, u; =0.4, and 03 =0.9. In
this case the distribution functions exhibit multiple crossings and all of the null
hypotheses are false.

For the alternative tests outlined in Section 4 we need to decide on the income
values at which the various objects will be calculated. It is clear that such a choice
will determine the extent to which these tests will agree or disagree with the
KS tests. Following Anderson (1996) we use income values that were equal to
the income deciles in the combined samples.?” Since the last decile is the largest
income value (at which both empirical CDFs are one) the SD1 test is then based
on the comparison of empirical CDFs at nine income deciles while the other tests
are based on all 10. The tests based on these income deciles and using p-value
simulations are referred to as MT10, W10, and MTA10 for the maximal #-test,
the Wald test, and the Anderson computation of the maximal ¢-test, respectively.
We also considered these tests based on quintiles, which we refer to as MT5, W5,
and MTAS, to gauge the effect of altering the comparison values on the tests’
properties.

The KS test for SD1 is performed using critical values obtained from (3). In
performing the tests using the p-values for SD2 and SD3 we use the decision
rule,

“reject Hy if p; <a,”

where p; is the p-value for the test statistic. In computing the p-values for the
simulation based KS tests of SD2 and SD3 the grid was chosen as 0 < ¢, <, <
- < tg, with the values being evenly spaced and where ¢y is the largest value

22 The income values selected for the multiple comparison tests are sample determined (based on
deciles or quintiles) and hence are stochastic. The multiple comparison tests do not take this source of
randomness into account. An alternative approach, supported by the distributional theory underlying
these tests, is to use a fixed set of values covering the range of income. We also implemented this
approach in the Monte Carlo experiments and found the power of the MT, W, and MTA tests to be
considerably less than that of the KS tests.
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TABLE I-A
SD1 TEsT, a = 0.05

N=M=50 N =M =500

Case 1 Case 2 Case 3 Case 4 Case 5 Case 1 Case 2 Case 3 Case 4 Case 5

KS1 0.033 0477 0.002 0.071 0.097 0.050 1.000 0.830 0469 0.923
MT(10) 0.049 0.639 0.140 0.102 0216 0.045 1.000 0910 0529  0.988
MT(5) 0.038 0543 0.020 0.084 0.150 0.045 1.000 0.009 0497  0.930
W(10) 0.050 0.659 0.140 0.111 0229 0.047 1.000 0.880 0.521  0.984
W(5) 0.054 0587 0.019 0101 0168 0.042 1.000 0.009 0488  0.916

MTA(10) 0.057 0.630 0.135 0.127 0246 0.050 1.000 0.899 0.526  0.985
MTA(S) 0.041 0520 0.020 0.085 0.162 0.047 1.000 0.012 0477 0923

in the samples. The number of gridpoints was fixed at K = 100. The simulation
methods are referred to as KS1 and KS2 for the methods that are based on (5)
and (6) respectively. The bootstrap methods are referred to as KSB1, KSB2, and
KSB3 for the p-value calculations based on (9), (10), and (11) respectively.

A total of 1000 Monte Carlo replications were performed and the rejection
rates were computed for each test and for the two conventional significance
levels of 0.05 and 0.01. We considered two sample sizes of N = M =50 and
N = M =500.2 The six tables I(A)-III(B) report the results with the label I, II,
or III referring to the type of test (SD1, SD2, or SD3 respectively) and the label
A and B referring to the nominal significance levels 0.05 and 0.01 respectively.

Some basic observations can be made regarding the properties of the different
test procedures. First, the p-value simulation method works quite well for all
tests. The Case 1 columns in all the tables contain rejection rates that are close
to the nominal significance levels for all the tests for almost all the hypotheses.
If anything there seems to be slight under-rejection but even this is small if and
when it exists.>*

All tests perform very well in Case 2. Recall that in this case the null hypothesis
is false and one should expect to reject the null hypothesis often. This appears
to happen in even small samples for all the tests. Indeed, when the sample size
is set to 500, all the multiple comparison tests reject the null 100 per cent of the
time. It is interesting to note that in this case using fewer income values does not
lead to a deterioration in the power of the MT, W, or MTA tests—this is because
the maximal values of the A;(z;) occur near the overall quintiles so that going
from evaluation at deciles to quintiles has little effect on the power of these

23 A total number of R = 1000 replications was used to simulate the p-values for the tests.

24 The KS1 and KSB1 methods were implemented taking the supremum of the simulated process
over [0, max,{max{X;, Y;}}] rather than the region [0, max,{X;}]. This only has consequences for
the tests of SD3 (more generally SDj for j > 2) where, unlike SD1 and SD2, the value of the test
statistic will depend on the relative size of the objects beyond the largest value in the X; sample.
Taking the supremum over the range of values in the X sample tended to lead to over-rejection of
the null hypothesis for SD3. However, taking the supremum over the range of values in the combined
X and Y sample resulted in the KS1 and KSB1 tests of SD3 having nominal size very close to the
actual size.
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TABLE I-B
SD1 TEesTs, a =0.01

N=M=50 N =M =500
Case 1 Case 2 Case 3 Case 4 Case 5 Case 1 Case 2 Case 3 Case 4 Case 5
KS1 0.008 0.216  0.000 0.018 0.021 0.012 1.000 0379 0.224 0.729
MT(10) 0.009 0371 0.035 0.029 0.070 0.009 1.000 0.794 0.270 0.939
MT(5) 0.012 0347 0.003 0.023 0.051 0.008 1.000 0.003 0.250 0.822
W(10) 0.014 0414 0.033 0.025 0.072 0.008 1.000 0.712 0.269 0.932
W(5) 0.013 0364 0.003 0.027 0.051 0.006 1.000 0.003 0.239 0.786
MTA(10) 0.006 0305 0.024 0.028 0.080 0.007 1.000 0.773 0.280 0.929
MTA(5) 0.008 0315 0.003 0.026 0.064 0.009 1.000 0.004 0.239 0.802
TABLE II-A
SD2 TesTS, a = 0.05
N=M=50 N =M =500
Case 1 Case 2 Case 3 Case 4 Case 5 Case 1 Case 2 Case 3 Case 4 Case 5
KS1 0.034 0312 0.000 0.090 0.120 0.042 0992 0.000 0.449 0.865
KS2 0.048 0254 0.000 0.136 0249 0.050 0960 0.000 0.433 0911
KSB1 0.042 0334 0.000 0.08 0.172 0.043 099 0.000 0479 0.875
KSB2 0.060 0.241 0.000 0.138 0.241 0.047 0983 0.000 0.457 0911
KSB3 0.067 0269 0.000 0.163 0269 0.045 0983 0.000 0475 0.927
MT(10) 0.048 0.740 0.000 0.062 0.097 0.045 1.000 0.000 0329 0.799
MT(5) 0.05s1 0.743 0.000 0.071 0.114 0.047 1.000 0.000 0313 0.830
W(10) 0.049  0.750 0.000 0.067 0.098 0.047 1.000 0.000 0315 0.788
W(5) 0.049 0.743 0.000 0.065 0.112 0.048 1.000 0.000 0.309 0.811
MTA(10) 0.051  0.673 0.000 0.088 0.120 0.050 1.000 0.002 0.437 0.903
MTA(5) 0.049 0.614 0.000 0.090 0.122 0.050 1.000 0.000 0.427 0.796
TABLE II-B
SD2 TEesTs, a =0.01
N=M=50 N =M =500
Case 1 Case 2 Case 3 Case 4 Case 5 Case 1 Case 2 Case 3 Case 4 Case 5
KS1 0.005 0.091 0.000 0.017 0.014 0.009 0874 0.000 0.174 0.598
KS2 0.012  0.090 0.000 0.043 0.066 0.013 0.713  0.000 0.177 0.761
KSB1 0.007 0.123 0.000 0.017 0.039 0.007 0.892 0.000 0.194 0.593
KSB2 0.013  0.083 0.000 0.041 0.065 0.008 0.742 0.000 0.195 0.664
KSB3 0.016 ~ 0.099 0.000 0.043 0.079 0.009 0.755 0.000 0.197 0.710
MT(10) 0.011 0453 0.000 0.017 0.020 0.012 1.000 0.000 0.146  0.559
MT(5) 0.010 0474 0.000 0.015 0.021 0.011 1.000  0.000 0.134  0.595
W(10) 0.009  0.461 0.000 0.015 0.018 0.009 1.000 0.000 0.138 0.534
W(5) 0.012 0481 0.000 0.018 0.023 0.011 1.000  0.000 0.133  0.582
MTA(10) 0.005 0390 0.000 0.013 0.029 0.010 1.000 0.000 0.202 0.736
MTA(5) 0.007  0.335 0.000 0.018 0.031 0.011 1.000  0.000 0.208  0.565
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TABLE III-A
SD3 TEsTs, a = 0.05

N=M=50 N =M =500

Case 1 Case 2 Case 3 Case 4 Case 5 Case 1 Case 2 Case 3 Case 4 Case 5
KS1 0.050 0.359 0.000 0.151 0.128  0.051 0.933  0.000 0.638  0.790
KS2 0.048 0342 0.000 0.132 0.177 0.048 0.898 0.000 0.435 0.831
KSB1 0.039 0377 0.000 0.130 0.138 0.046 0982 0.000 0.620 0.823
KSB2 0.058 0332 0.000 0.137 0.178 0.052 0901 0.000 0.439 0.815
KSB3 0.056  0.331 0.000 0.136  0.183  0.045 0.904 0.000 0436 0.825
MT(10) 0.045 0.739 0.000 0.051 0.066 0.047 1.000 0.000 0.298  0.683
MT(5) 0.049 0.755 0.000 0.058 0.075 0.048 1.000 0.000 0316 0.708
W(10) 0.046  0.748 0.000 0.050 0.067  0.045 1.000  0.000 0.298  0.674
W(5) 0.051 0.756  0.000 0.062 0.074 0.051 1.000  0.000 0309  0.695

MTA(10) 0.056 0.691 0.000 0.078 0.079 0.056 1.000 0.000 0.393 0.682
MTA(5) 0.048  0.647 0.000 0.077 0.083 0.047 1.000 0.000 0383 0.576

procedures. In this case the MT and W tests seem to have more power (for the
N = M =50 case) than the MTA test when testing SD2 and SD3. Although the
KS tests have rejection rates that are lower than that of the multiple comparison
tests in this case, all the KS tests exhibit very good power. Among the KS tests,
the KS1 and KSBI tests have greater power than the KS2, KSB2, and KSB3 tests
in detecting the violation of the null of both SD2 and SD3 in this case.

Case 3 illustrates nicely the potential sensitivity of the MT, Wald, and MTA
tests to the points at which the statistics are evaluated. In particular it is notewor-
thy that when one goes from comparisons at deciles to comparisons at quintiles
the test for SD1 loses power completely—recall that Case 3 is one where SD1
fails but where the other hypotheses are true. Indeed, when the sample size is
500 the test goes from rejecting at a rate of about 80% to a rejection rate that

TABLE III-B
SD3 TEsSTS, a =0.01

N=M=50 N =M =500
Case 1 Case 2 Case 3 Case 4 Case 5 Case 1 Case 2 Case 3 Case 4 Case 5
KS1 0.011  0.160 0.000 0.053 0.031 0.010 0.771 0.000 0.408 0.574
KS2 0.014  0.141 0.000 0.036 0.053 0.011 0.685 0.000 0.188  0.635
KSB1 0.011  0.168 0.000 0.046 0.043 0.008 0945 0.000 0.409 0.501
KSB2 0.010 0.123  0.000 0.032 0.039 0.009 0.706 0.000 0.188 0.511
KSB3 0.013  0.136  0.000 0.045 0.066 0.011 0.700 0.000 0.190 0.521

MT(10) 0.008 0.456  0.000 0.014 0015 0.008 1.000 0.000 0.121 0.444
MT(5) 0.010  0.467  0.000 0.016 0.020 0.008 1.000 0.000 0.126  0.465
W(10) 0.010 0.446  0.000 0.015 0.016 0.011 1.000 0.000 0.112 0418
W(5) 0.011 0472  0.000 0.015 0.017 0.009 1.000 0.000 0.126  0.449
MTA(10) 0.006 0435 0.000 0.016 0.018 0.010 1.000 0.000 0.176  0.472
MTA(S) 0.010 0344  0.000 0.014 0.017 0.014 1.000 0.000 0.185 0.338
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is less than the nominal size of the test. When deciles are used, however, the
test does seem to have a higher rejection rate than the KS tests. In Case 3 the
population values of the A;(z,) are all negative and the theory in Section 2 sug-
gests that one should reject the null at a rate that is less than the nominal size
of the test. This appears to be supported by the results of the tests of the SD2
and SD3 hypotheses in this case. We never reject the null hypothesis using the
KS tests.

Some interesting features of the tests are evident in Case 4. The violation of
SD1 occurs at an income value close to the first quintile. The crossing of the
functions for SD2 and SD3 occur at progressively higher income values, with the
violation of SD3 near the fourth quintile. The extent of the violation of the null
hypothesis is also progressively less for higher orders of SD. All the tests perform
reasonably well in detecting the violation of SD1, with the multiple comparison
tests evaluated at the sample deciles having the highest rejection rates. When
testing SD2 the KS tests perform better than the other tests, among which the
MTA test seems to have more power. This ranking becomes even clearer when
testing SD3. Among the KS tests, the KS1 and KSB1 tests, which are easier to
compute, perform better when testing SD3.

For Case 5, with multiple crossings of the functions defining SD1 and SD2,
and a single crossing in the upper tail of the functions defining SD3, the KS
tests appear to have very good power compared to the MT and W tests when
testing SD2 and SD3. For MTA the comparison is sensitive to the number of
evaluation points, although for testing SD3 the KS tests appear to have more
power regardless of the number of evaluation points used in the MTA test.

Overall the results suggest that the KS tests have some merit. While there may
be some cost in terms of power and computational time, the tests do a fairly
good job of detecting any departure from the properly specified null hypothesis.
In addition they circumvent the need for one to arbitrarily choose a set of income
values at which objects are to be compared as required by the other methods. The
results for the other tests suggest that the approach to simulating the p-values
for MT and MTA as suggested in Section 4 works as well as the approach to
obtaining p-values for W.%» All of these multiple comparisons approaches had
similar size properties. In terms of power, the results suggest that there is lit-
tle to distinguish between MT or W. This is not surprising since the tests are
based on comparing the same objects in different ways. On the other hand the
MTA tests are based on the calculations of Anderson (1996) which, while sim-
pler still than those used in the MT and W tests, have different properties when
testing SD2 and SD3 primarily because these tests compare decile and quintile
based approximations to the integrals that were computed directly in all the other
approaches.

5 Indeed, as one would expect, in all cases for MT and MTA inferences based on the simulated
p-values are preferable in terms of size and power than inferences based on either the critical values
from the SMM distribution or the conservative critical value discussed in footnote 18.
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TABLE IV
DESCRIPTIVE STATISTICS

Before Tax After Tax
1978 1986 1978 1986
Sample 8,526 9,470 8,526 9,470
Mean 35,535 36,975 29,840 30,378

Std. Dev. 22,098 24,767 16,873 18,346
Median 32,423 32,658 27,813 27,337

6. EMPIRICAL EXAMPLE

In this section we consider the use of the different methods in the context of
an empirical example. The data we use comes from the Canadian Family Expen-
diture Survey for the years 1978 and 1986.2° We consider a comparison of the
income distributions in 1978 and 1986 using the methods that were compared in
the previous section. In Table IV we have supplied some basic descriptive statis-
tics for these data. In addition in Figures 1(A) and 2(A) we have plotted the
empirical CDF for the before and after tax income data respectively with the 1978
distribution being the solid line. The Figures 1(B) and 2(B) contain the differ-
ence between the 1978 and 1986 empirical CDFs plotted against income values
and give a much clearer picture. As indicated by the latter figures the difference
between these distributions is quite erratic even though the distributions them-
selves are quite regular looking. The plots of the differences also give one an
idea of the importance of selecting income values for evaluating the MT and
W tests—one may miss out on important differences between the distributions
depending on where one computes and compares the empirical CDFs. Similar
issues arise for tests of higher order stochastic dominance.

In Tables V and VI we present p-values for all the tests considered in this paper
for the 1978/1986 income distribution comparison.”’” In Table V we have the
results for before tax income while Table VI contains the after tax income results.
The panel labelled “1986 versus 1978” contains p-values for testing whether the
1986 income distribution stochastically dominates the 1978 income distribution
(to the specified order) while the other panel tests the opposite hypothesis.?
In Table V there is agreement between all the tests that the 1986 (before tax)
income distribution dominates the 1978 distribution in both a second order and

26 In fact we analyzed data from the years 1974, 1978, 1982, 1986, and 1990. In comparing the
distributions across time all tests were generally in agreement that 1990 dominates 1986, 1982 domi-
nates 1986 and 1978, and finally that 1978 dominates 1974. Therefore, as noted by Anderson (1996)
(who referred to these data as the Family Income surveys with years that differ by one in each case),
with the exception of 1986, the income distribution has unambiguously been improving over time.

2 The Gauss programs for the various Multiple Comparisons and KS tests used in the Monte
Carlo experiments and empirical application are available from the authors’ websites.

28 Therefore the null hypothesis for the SD1 column of the panel labelled “1986 versus 1978” is
that the CDF in 1986 is less than or equal to that in 1978. Similar interpretations hold for the other
tests.
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FIGURE 1A.—Before tax family income CDF’s.

third order sense. The first panel indicates that one cannot reject that 1986 dom-
inates 1978 in both a second and third order sense while the second panel indi-
cates that the converse can easily be rejected since the p-values are essentially
zero for all KS, MT, and W tests. The evidence is not quite as strong using the
MTA tests but one can still reject the null at conventional significance levels of
0.05 and 0.01. With respect to first order dominance the KS test suggest that
one can reject the nulls of SD1 in both cases while the other tests are less clear
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FIGURE 1B.—Before tax family income CDF difference.
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FIGURE 2A.—After tax family income CDF’s.

on this with p-values falling between 0.01 and 0.05. It is interesting to note that
when only 5 values are used to compute the MT, MTA, and W tests, the p-values
are all larger than conventional significance levels when testing the null that the
1986 distribution stochastically dominates (in a first order sense) the distribu-
tion in 1978. This appears to occur because in this case the tests are based on
values that exclude the largest difference between the CDFs that occurs around
the income level of $20,000 (see Figures 1(B) and 2(B) for instance). It is also
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TABLE V
STOCHASTIC DOMINANCE IN CANADIAN BEFORE TAX FAMILY INCOME

1986 versus 1978 1978 versus 1986
SD1 SD2 SD3 SD1 SD2 SD3
KS1 0.010 0.380 0.550 0.000 0.000 0.000
KS2 0.010 0.350 0.503 0.000 0.000 0.000
KSB1 0.010 0.370 0.540 0.000 0.000 0.000
KSB2 0.010 0.370 0.570 0.000 0.000 0.000
KSB3 0.010 0.280 0.480 0.000 0.000 0.000
MT(10) 0.018 0.216 0.388 0.000 0.001 0.001
MT(5) 0.156 0.194 0.353 0.000 0.000 0.000
W(10) 0.038 0.228 0.412 0.000 0.000 0.000
W(5) 0.157 0.189 0.369 0.000 0.000 0.001
MTA(10) 0.020 0.128 0.185 0.000 0.000 0.004
MTA(5) 0.154 0.159 0.157 0.000 0.000 0.005

noteworthy that although the p-values in the first panel for MT and W are quite
similar for testing SD2 and SD3, the p-values are different for MTA, reflecting
the fact that the objects being compared are slightly different.

In Table VI there is not as much agreement between the various tests in terms
of their implications for second and third order stochastic dominance. In partic-
ular the KS tests suggest that one can reject the null that 1986 dominates 1978
at the first order but one cannot reject SD2 and SD3 in this case. For the con-
verse hypotheses one can easily reject SD1 but for SD2 and SD3 there is only
weak evidence against the null with p-values falling near conventional levels of
significance. Overall, the KS tests indicate that neither distribution dominates the
other in a first order sense and there is weak evidence that the 1986 distribution
dominates 1978 in a second and third order sense. Based on the MT and W
tests, the evidence against SD1 for 1986 versus 1978 is weaker than with the KS

TABLE VI
STOCHASTIC DOMINANCE IN CANADIAN AFTER TAX FAMILY INCOME

1986 versus 1978 1978 versus 1986
SD1 SD2 SD3 SD1 SD2 SD3
KS1 0.005 0.220 0.520 0.001 0.010 0.060
KS2 0.005 0.224 0.471 0.001 0.022 0.073
KSB1 0.005 0.200 0.470 0.001 0.030 0.060
KSB2 0.005 0.200 0.480 0.001 0.030 0.070
KSB3 0.005 0.240 0.460 0.001 0.010 0.050
MT(10) 0.019 0.068 0.184 0.000 0.002 0.001
MT(5) 0.014 0.070 0.204 0.000 0.056 0.033
W(10) 0.025 0.077 0.198 0.000 0.000 0.003
W(5) 0.017 0.083 0.213 0.000 0.054 0.027

MTA(10) 0.018 0.047 0.073 0.000 0.008 0.086
MTA(5) 0.016 0.024 0.031 0.000 0.004 0.059
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tests, there is weak evidence against SD2, and clear evidence that SD3 cannot be
rejected. Using these tests one can easily reject SD1 for the converse hypothesis
while the results for SD2 and SD3 depend on the number of evaluation points,
with the evidence against the null being stronger when comparing the objects at
10 points. On the other hand while MTA is similar for SD1, the results for SD2
and SD3 are somewhat different, most notably when testing SD3 for 1986 versus
1978, with there being some weak evidence against all the hypotheses.

7. CONCLUSION

In this paper we have considered Kolmogorov-Smirnov type tests for an arbi-
trary degree of stochastic dominance. We have proposed a variety of simulation
and bootstrap methods for conducting inference for degrees of stochastic domi-
nance beyond the first degree and have shown that the approaches behave well
asymptotically. In addition we have shown that the tests perform well in finite
samples. The way that the p-value approach was implemented in both the Monte
Carlo and empirical example suggests that one does not need to perform too
many computations to obtain reasonable inferences. The main advantage of the
approach is that the tests are consistent, being based on an examination of the
complete set of restrictions that follow from stochastic dominance. The main
disadvantage of the approach is that simulation or resampling is required for
inference. However, this is not a major issue given modern computing capabili-
ties. Moreover, the main competitor proposed in the literature appears to be the
Wald test of (a fixed number of) inequality restrictions which also requires simu-
lation for inference but has the potential for inconsistent test results. Finally, the
methods developed in this paper can be extended to other situations where one
is interested in comparing curves and testing for dominance relations. An obvi-
ous application is to the case of Lorenz curves and testing for Lorenz dominance
relations in the analysis of economic inequality.
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APPENDIX

PROOF OF LEMMA 1: The fact that

VN(5,(5 Fy) = 5;( F)) = 5;(; Bp o F)

in C([0, Z]), the space of continuous functions on [0, z ], follows from the fact that .%,(.; fN) is con-
tinuous for j > 1 and from an application of the Continuous Mapping Theorem (CMT). The latter
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applies since .7; is a linear functional of the process VN (fN — F), which satisfies the weak conver-
gence result /N (Fy — F) = %, o F. For the covariance kernel we note that given the representation
in (1) and letting X have distribution F, we can write
“Qj(zl’ 7, F) = E(jj(zlé 1x)‘7/(22§ 1y)) _E(jj(zl; 1X))E(jj(22; 1x))
-t /Z] (z, = xY (2, — x) " dF (x) = F.(25; F).9.(z,; F)
= ((j—1)!)2 ) 1 2 j\Z25 JACSE) .
By the binomial theorem we have that

(2 =) = ((z1 =) + (2, = 2))"

B (k) LS R TR)
1=l

(G~ 1)
Therefore,
1 21 i i
Gy ) @m0 @ are)
1 1 y
= _ j—1-2
- (]_1)'gl'(j—l 1), 1) / (Z )C) dF(x)
=@j-1-2) .
Z m(zz —2zy) ij—I—l(Zlv F)
j—1 1 . .
= Z ﬁei(zz —z;) oo (215 F)
=0 "
and the result follows. QE.D.

PROOF OF PROPOSITION 1: All limits are taken as N — oo in such a way that Assumption 2(ii)
is satisfied. The proof is based on a characterization for the limiting distribution and the application
of an inequality. From the Glivenko-Cantelli Theorem, the Donsker Theorem, the fact that z < oo,
and the results in Lemma 1, we have that
(12) sup|jj(z; u)— Iz G)| 3 0,VM(5(; G Gy) — Fi(5 G)) = I,(:; B 0 G),

13) sup |7, (z; Fy) — 5,(z; F)| 55 0, VN (5, (5 Fy) = 5;(; F)) = 5;(:; B o F),

in the space D([0,z]) (cadlag functions on [0,z]) for j =1 and the space C([0,z]) (continuous
functions on [0, z]) for j > 2. Use the notation Z = [0, z]. Immediate implications are that

(14) sup|( (23 Gu) = 9,25 By)) = (9,(2;: G) = 7,(z; F))| 3 0
and, using Assumption 2(ii),
(15) T.(.) :‘/ﬁiMM(JJ(.;G\M)—Jj(.;G))— NA;MM( (5 Ey) = 5,05 F))

N23,(5 B0 G)— (1= N)"2F,(;; BroF)
T().
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Use the notation f,(z) for T] evaluated at the specific point z € Z. An implication of the weak
convergence result is that for any vy, & > 0 there exists a 6 > 0 such that the following stochastic
equicontinuity condition holds:

(16) lim sup P< sup |T}(zl)77¢/(zz)| > s) <y
lz1-21<8

(see, for instance, Pollard (1984, Chapter V, Theorem 3)).
To show the result in A(ii) we note that,

R R NM "2
5 <swn T2 bsup( gy ) (0 G) =9 )

<supT;(2)
by the definitions of :S': and ?j(z) and the fact that under Iﬁ, Ji(z; G)—=9;(z; F) < 0 for all z. There-
fore the result in (ii) follows using (15) and the fact that S jG’F =sup, Tj(z).

To show A(i), noting that .7,(z; G) — .%;(z; F) < 0 for all z, we denote by Z* the set of z values
for which .%;(z; G) = .9;(z; F). Then for any z € Z* we have that

Ti(z) = <NN+MM> (F5(z: Gu) = 9z Ey))-

It is easily seen that Z* is a compact set because of Assumption 1. We aim to show that for ¢ > 0,

17) P(§, >c)—> P<sup T(z) > c>.

zeZ*

To show this we first note that

~ NM \'? - ~
S = (m) Szgg(jf(Z;GM)—jj(Zé Fy))

A%

sup 7,(2)

zeZ*

= sup 1_",(2)

zeZ*
because of the fact that Z* C Z and using the Continuous Mapping Theorem (CMT). Consequently,
(18) lim sup P(fj <c) < P(sup T(z) < c).
zeZ*

Let Z denote any value of z that solves the problem
5“5(51(2; (A;M) - (= I?N))

and note that Z € Z. We suppress the dependence of Z on N and M for ease of notation. Then, for
any nonempty Z* C Z* we have that

(19) 5 - ( - J:”M> (5,(2: G) = 5, (3: Fo)

zeZ*

1/2
<T@+ (55) (G- (ER)TE) - inf T
)-T,(z

< sup f"/(z) + sup (/T\J(zA' ))
zeZ*

zeZt

< supT,(2) + sup|T,(£) - T,(2)|
zeZ* zezZt
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where the second line follows from the fact that
inf T}(z) <sup ﬁ.(z),
zezt 2eZ*
and the third line follows from the fact that, under the null hypothesis,
(F,(2,G)—5,(¢; F)) <0.
Now pick any &* > 0. Let ¢’ be such that ¢’ <c,
(20) P(sup Y_"j(z) < c) — P(sup Y_"j(z) < c/) <&
zeZ* zeZ*

Let &, be a positive number such that 0 < &, < ¢ — ¢’ and then pick a 6 > 0 such that (16) holds with
& =¢, and y = ¢*. Define the set Z+ = Z*N B(Z, §) where B(Z, ) is a ball of radius & around 2,
and let 4, , denote the event that Z* is nonempty. We first demonstrate that P(Ay ,) — 1. Let
Zr={zeZ:d(z,Z*) = 8}, where d(z, Z*) = inf,,_,« |z — 2| is a measure of the distance of the point
z from the compact set Z*. It is only necessary to consider the case that Z} is nonempty because
otherwise P(Ay ) =1 for all N, M. It is easy to show that Zg is a compact set by Assumption 1.
Consequently, for some 7 > 0,

(21) sup(J;(z; G) — F;(z; F)) = —2m < 0.

zelg
Pick an arbitrary z* € Z* and note that the event
(22) 51121:(]/-(2; Gy) = 5,(z: Fy)) < (5(2": Gy) = 5,(2"s Fy))
2eZ%
implies that # ¢ Z:. This implies that d(Z, Z*) < 8, which implies that Z* is nonempty. Therefore
Ay y is implied by event (22). Also note that the event
sup(7;(z; G) = 7(z: Fy)) < =,

ZEZ§
(7(=% 6M) = J(z ﬁN)) > =,
implies (22). Therefore,
P(Ay ) zP(suP(]j(z; G =5, (:)) < (5(z5: Gy) — 7= FN))>
zeZ’é

= P({sup (5,2 G) 5 (3 F)) < =nf 0 (5,136) -5, ('3 )) = =]

Zx
zeZ(S

v
=
<
N

Q)

W) =53 E)) = =1) = P(sup(5) (3 G) = 5z ) = =)

7
2526

with the third line following from the fact that P(4NB) > P(4) — P(B) for events 4 and B (with
B being the complement of B). Then by (12), (13), and (14), and the fact that .7;(z*; G) = .%,(z*; F)
we have that

P((5,(z% Gy) =5, (z" ) = —m) > 1,

J

while

p<sup(,y(z; Go) -5,z ) > _n) ~0

7%
zeZs
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follows using (12), (13), (14), and (21) to show that

~ -~

sup(.7;(z; Gy) — ;(z; Fy)) = sup{(;(z; Gy)— Ii(z F, V) — (F(z: G)

zszg zeZ*
—J,(2; F)) +(J,(z; G) = J,(z; F))}
< sup|( 2 G M) — (z FN))—(jj(z; G)
ZE 8
—9,(z; F))| +sup(J;(z; G) = .5,(z; F))
zelg
& —2n.
Therefore we have that P(Ay ) — 1. Then,
(23) P(S;<c)=P({S; <c}NAy ) +P({S; < c} N Ay )

supTi(z)+ sup |Ti(z)— T(zz)|<c}ﬂANM)
zeZ* |z1-2|<8

/'\

P(swp T+ sup [T~ T(zz)\<c)—P(ZN,M)

|z1—2p|<8
P({S; =c}ndy )

where the second line follows from the fact that in the event A, ,, the inequality in (19) holds and
the third line follows from the fact that

sup‘T(z) T(z)‘< sup |T(zl) T(Zz)|

zeZt |z1—2p|<8

For the first term in the last line of (23) we note that by ¢’ +¢&, < ¢ the event

fsnf@ <efn] s 70T <e)

zeZ* |z1—2p|<8

implies the event

[T+ swp [ -Te|=e].

zeZ* |z1—22]<8
Therefore, using the fact that the probability of the former is no larger than that of the latter plus
the inequality P(ANB) > P(A) — P(B), we have that

24) P(sup T"j(z) < c’) 7P< sup |1A",(zl) - i(z2)| > 81>

zeZ* |z1—25|<8

(supT(z)+ sup |T(zl) T(zz)|<c>

|z1—2p|<8
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Then we have that

liminf<P(sup T“j(z) < c’) —P( sup ‘T,(Zl) - ?j(zz)l > 81))

zeZ* |z1—25|<8

> P<sup Tj(z) < c) —2¢*

zeZ*

using (16) and (20). Combine this result, (24), the last line of (23), and the fact that P(Ay ) — 1
implies that both P(Ay ,/) — 0 and

P({S; <c}nAy ) =0,
and we have

limian(/S\j <¢)= P(sup 7_",(2) < C) —2¢*.

zeZ*

Since &* is arbitrary, we have using (18) that

lim P(§/ <c)= P(sup T}(z) < c).

zeZ*

To show the result in A(i) of Proposition 1, fix F. For any G satistying the null hypothesis we have
that

(25) Fi1(z; G) < ;4(z; F) for all z for all 1 > 0.
Compare the situation where .%,(z; F) = .%;(z; G) for all z (and hence F(z) = G(z) and .9/(z; F) =
Fi(z; G) for all z and all I > 1) to that where .%,(z; F) = ;(z; G) for all z € Z* C Z. Denote the

limiting random variable corresponding to Tj(z) in the case where .%,(z; F) = .%;(z; G) for all z by
T (z). The result will follow from the inequalities

(26) P(SUZE T(z) > c) < P(suZ]z T'(2) > c) <P(S[ > o).

The second inequality is obvious from the fact that Z* C Z and the fact that §]F £ sup, 7_}0(2). To
show the first inequality, let 7(z) denote the process that is identical to T}(z) in every respect except
that G = F. Then consider (for z, > z, with z,, z, € Z*),

E((Tj(zz)_Tj(zl))z):)\(gf(zz,zz;G)+-Qj(21721§G)_?“Q;‘(Zz;Zl;G))
F(A=2)(2;(25, 255 F) + (21,21, F) =204(25, 2,3 F)).
Now by Lemma 1 and the fact that .%,(z; F) = .9;(z; G) for z = z, and z = z,, we can write
-Qj(zlaz1; G)= -Qj(z1721§ F)—ay,
02i(2, 253 G) = 04(2;, 25 F) — (a, + ay),
where a;, =a, =0 for j =1, and
a = 06(‘721'—1(21; F)—9;_1(z1;G)) 20
a, = 06(.5‘2],1(22; F) —32]71(21; F)) - Gé(jz,»,l(zz; G) _‘Yzi—l(zl; G))

. r
=0 [ (Fyalts F) = Ty a6 G)) e 2 0
1



STOCHASTIC DOMINANCE 101

when j>2 by 2j—2 > j and (25). Similarly we can write
‘{2]'(2272]; G)= _(2]-(22,21; F)—(a,+as)

where a; =0 for j <2, and for j > 2

Jj-1

az; = Zol l,(zzle) (72, 1z F) = Fajoi- (215 G))

= Zel n (22— 20) (Fojer (215 F) = Ty (215 G)) 2 0

where the second line follows by .%,(z,; F) = .%;(z,; G). Now by (25) and Taylor’s theorem with
Lagrange remainder, we have that for some z* € (z,, z,] and for j > 2,

a, = 9{;((;721-_1(22; F) _jz,'—l(zz§ G))— (jzj'—l(zl; F) _jzj—l(zl; G)))

1
7 —21),('72];171(21; F)— ‘Yzf—l—l(zl; G))

1 j—1 x. x.
+m(22—21) (J:(z"5 F) = 5,(z"; G))

j—=2

i1
= ZZG,’E(ZZ —2)(Foy 11 (205 F) = Ty 11 (215 G))

=1

= 203

where the third line follows by (25), (2) in Lemma 1, and the recurrent formula for binomial coeffi-
cients. The inequality a, > 2a; holds trivially for j <2. Consequently we have

E((T(z) = T(z)") = E((T)(22) = T (z0))") = May + a1 + 4 = 2(ay +5))
< E(T)(22) - T'(2)))?).

Since the stochastic processes are separable, mean zero, and Gaussian, Proposition A.2.6 of Van der
Vaart and Wellner (1996) (the Slepian, Fernique, Marcus, and Shepp inequality) implies that the
first inequality in (26) holds and the result in (ii) follows since P(sup,., T_}O (2) > ¢) is the asymptotic
probability of rejection in the case where F(z) = G(z) for all z € Z.
To show the result in B we note that if the alternative is true, then there is some z, say z € Z, for
which
I(z;G)—9(z; F) =8> 0.

Then the result follows using the inequality
~ NM \'? PN PN
S = (7N+M> (9,(2: Gu) = 9;(Z: Fy))
and the results in (12), (13), and (14). Q.E.D.

PROOF OF PROPOSITION 2: Write

B (2 Fy) = Z(l(X =2)-Fy()U/

(1(X<Z) F)U] — (Fy(2) - F(Z))

o -
ﬂMz [N
5~

1?12
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First consider the second term. Note that almost every sample (of X;) has the property that
sup, |Fy(z) — F(z)| — 0. Then using the fact that the U/ are mean zero independent Gaussian ran-
dom variables, we have that conditional on the sample

P, (sup s)

= PU(sup‘ FN(Z) F(2)) |‘ ZUF

(Fy(2) - F(2)) % é Ur

-s)

(sup, |(Fy(2) = F@)PE(F L2 (UF))

&€

— 0.

Consequently for this sample we have that

u %o

\\Mz

(Fy(2)- F(Z))f

(where 0 is the zero function, a member of the space D) which implies that for the particular sample,

1 N
— > Uf=o.
W

But this holds for almost all samples so that we have

(Fy(2) - F(2))

(Fy(2) - F(2)) fZUF:»O

For the first term, Corollary 2.9.3 of Van der Vaart and Wellner (1996) implies that the process
%* o F, which at z is given by

B (z; F) = % Z:(l(X, <z2)-F(2)Uf,

satisfies 9%} o F = %, o F for almost all samples, where %) o F is an independent copy of %, o F.
Combining these results we have that %* ofN = %o F. Similar arguments can be used to show that
B 0 6 =9 B oG for some Brownian Bridge %; that is independent of %/.
To show the results concerning the asymptotic behavior of the p-values, we prove the result for
 with the result for pr * being analogous. Let P ~(?) be the CDF of the process (conditional on
the original sample of X;) generated by sup, .%;(z; %* oFy). By B oFy = By o F and the CMT we
have that

27) sup.%(z; B 0 Fy) gsupjj(z; B o F)

where the random sup, .¥;(z; %} o F) is an _independent copy of §f . Note that the median of the
distribution of sup, .;(z; %} o F) (denoted P} (1)) is strictly positive and finite. By Tsirel’son (1975)
PJ(¢) is absolutely continuous on (0, o0) and, moreover, c¢;(a) (defined by P(S] > ¢;(a)) = a) is
finite and positive for any fixed a < 1/2 using (for instance) Proposition A.2.7 of Van der Vaart and
Wellner (1996). Note that event {p] < a} is equivalent to the event that {§j > ¢;(a)} where

(28) inf{r: P, () > 1—a} =& (a) = ¢;(e)
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by (27) and the properties of PY(¢) noted above. Then
lim P(reject H)|H}) = lim P(S; > ¢;(a))
=1im P(S; > ¢;(a)) +im(P(S; > ¢;(a)) — P(S; > ¢;(a)))
<P(S/>c(0)=a

where the last line follows from (28), A(i) of Proposition 1 and the fact that c;(e) is a continuity
point of the distribution P;(r). On the other hand Proposition 1 B and finiteness of c;() imply that
lim P(reject Hy|H]) = 1. Q.E.D.

PROOF OF PROPOSITION 3: By Theorem 3.6.3 of Van der Vaart and Wellner (1996) we have that
for independent samples drawn from %,

(29) VN(F;—Fy) 3 Bl oF £ %, 0F

while from %,

(30) VM (G —G) S BLoG L BuoG

where %), (respectively %Y;) is a Brownian Bridge process for the distribution F (respectively G) and
has the same distribution as %, (respectively %;). Note also that under the independent resampling

9B and B, are independent processes. Similarly Theorem 3.7.6 gives that with independent random
samples from Z

(31) N+M(G* —F) S VABL oG —NT—XBoF
(32) L VXB;0G—V1—A%B, oF.

This convergence is in the sense that (for instance),

sup |Ec(h(VN(Ey; — Fy))) = E(h(B, 0 F))| 5 0

heBLy

where BL, is the space of bounded Lipschitz functions mapping C[0, 1] into [0, 1], and where E. is
the expectation given the sample % and Z respectively. We can see that the functional, .%;(.; F) is
Hadamard differentiable with derivative .%;_,(.; F) by induction. This starts by noting that .7,(.; F)
is Hadamard differentiable being the identity mapping and therefore .%,(.; F) is Hadamard differ-
entiable since it is linear. Consequently we have that .;(.; F) is a linear functional of a Hadamard
differentiable mapping .%,_, (.; F). Using this fact, the results in (29) and (31) and Theorem 3.9.11 of
Van der Vaart and Wellner (1996) gives the result that

VNI ) = 9,05 Fy) 2 9,5 B o F),

NM
N+M
NM * 4 .A* .A

N+M((j( G ) j( GM)) (jj('9FN)_jj("FN)))

=Y Fi(sVABG 0 G —V1—AB} o F).

(5 Gy) =T (5 F)) 2 T, (5 VAT, 0 G =T =A%} o F),

The remainder of the proof follows the proof of Proposition 2 (using 2 instead of ﬂ:;) Q.E.D.
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