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Abstract

This paper considers methods for comparing poverty in two income distributions. We

�rst discuss the concept and usefulness of the Poverty Gap Pro�le (PGP) for comparing

poverty in two populations. Dominance of one PGP over another suggests poverty dom-

inance for a wide class of indices which may be expressed as functionals of the PGP. We

then discuss hypotheses that can be used to test poverty dominance in terms of the PGP

and introduce and justify a test statistic based on empirical PGP�s where we allow for the

poverty line to be estimated. A method for obtaining critical values by simulation is pro-

posed that takes account of estimation of the poverty line. The �nite sample properties

of the methods are examined in the context of a Monte Carlo simulation study and the

methods are illustrated in an assessment of relative consumption poverty in Australian

over the period 1988/89-2009/10.

JEL classi�cation: C01, C12, C21

Keywords: Poverty gap pro�le, poverty gap pro�le dominance, hypothesis testing,

poverty line.
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1 Introduction

Since the pioneering work of Sen (1976), research in poverty measurement has sought

to develop measures which take into account the incidence, depth and distributional

aspects of poverty. More recent research has focused on developing methods for making

poverty comparisons which are robust to the normative properties of a speci�c poverty

index. This line of research has culminated in the contributions of Atkinson (1987),

Shorrocks (1995) and Jenkins and Lambert (1997) on poverty quasi-orderings based on

the distribution of poverty gaps or �poverty shortfalls�.

Poverty Gap Pro�les (PGP) have key properties which enable them to play a central

role in poverty analysis, analogous to the role of Lorenz curves in inequality measure-

ment. First, the PGP is an intuitive graphical device for illustrating the three fundamen-

tal aspects of poverty evident in an income distribution. Second, the normative criteria

incorporated in the PGP dominance quasi-ordering (focus, monotonicity, S-concavity)

are widely accepted as a minimal set of properties desired of normative poverty mea-

sures. The normative properties of the PGP are transparent and directly related to the

stochastic dominance (SD) criteria used in the welfare and inequality measurement liter-

ature (Ravallion, 1994). Further, poverty comparisons based on poverty gap dominance

relations are robust to the additional normative properties embodied in a speci�c poverty

index, and to the common scaling of poverty lines. Although the poverty gap dominance

criteria provide a partial ordering of distributions, many popular poverty indices can

be expressed as functionals of PGPs and can be used to generate a complete, cardinal

ordering of distributions.

In this paper we develop consistent tests for poverty gap dominance relations that

compare two estimated PGP�s for two independent samples of individual or household

income.1 The proposed test is Cramer-von Mises type test statistic based on an integral

of the positive di¤erence between two empirical PGPs. An obvious alternative would have

been to use Kolmogorov-Smirnov type tests as has been used for tests of SD proposed

in McFadden (1989) and elaborated and extended by Barrett and Donald (2003) and

Linton, Maasoumi and Whang (2005). Although it appears that such a test seems to

1The methods can also be applied to the distribution of earnings, consumption or wealth. We use the

term income as synonymous for any measure of economic wellbeing.
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work in practice, based on simulations, it is more di¢ cult to properly justify its theoretical

properties since there is a non-di¤erentiability in the PGP at the poverty line. When the

poverty line is estimated, as in our case, this makes it di¢ cult to take into account the

e¤ect of this on the limiting distribution.

The advantage of testing PGP dominance over SD is that PGP dominance directly

tests the hypothesis - poverty dominance - of interest. As an inferential problem, the

proposed PGP test, unlike SD testing, permits the poverty lines to di¤er across distri-

butions and, importantly, to be sample dependent. Further, the results could also be

used to derive statistical properties of poverty indices that are de�ned as functionals of

the PGP. The results provide the foundation for empirical poverty comparisons based on

PGPs within a framework of formal statistical inference.

In the next section of the paper the PGP is de�ned. Section 3 states the hypotheses

of interest which relate to dominance relations between two PGPs de�ned on two popu-

lations. In Section 4 we de�ne the empirical version of the PGP and Cramer-von Mises

type test and derive the properties of tests based on the test statistic with simulated

critical values. Section 5 shows how one can adapt the results to allow inference based on

the normalized PGP. Section 6 provides a small scale Monte Carlo study which examines

how well the asymptotic arguments work in small samples. The inference procedures for

PGP dominance relations are illustrated in Section 7 with an application to Australian

consumption data and Section 8 concludes.

2 Poverty Gap Pro�les

In this section we consider the de�nition and properties of the PGP. To derive the PGP

let income X be distributed with distribution function F (x) = Pr(X � x): Let z denote

a poverty line which may be known or possibly unknown. In the case of an unknown z

we will assume that it is estimated as a function of an estimated sample quantile (e.g.

median) or moment (e.g. mean). Given a poverty line z we can de�ne the population

version of the �head-count ratio�as F (z) = Pr(X � z) which is simply the proportion

of the population with incomes below the poverty line. Although the empirical version

of the head-count ratio is popular, this summary measure of poverty has been widely

criticized since it captures only the incidence of poverty and ignores the depth of poverty

4



and the inequality in incomes among the poor (Sen, 1976). Shorrocks (1995, 1998) and

Jenkins and Lambert (1997, 1998a, 1998b) suggested the use of the PGP, and indices

based on this curve, as a general approach to obtaining poverty dominance orderings

which are sensitive to these three aspects of poverty measurement. The PGP is also

known by a variety of names, such as the �deprivation pro�le�of Shorrocks (1998), the

�Three I�s of Poverty (TIP)�curve by Jenkins and Lambert (1997, 1998a, 1998b),2 and

is dual to the poverty de�cit curve introduced by Atkinson (1987). To de�ne the PGP

let

D(z;X) = maxfz �X; 0g = (z �X) � 1(X � z) (1)

be the poverty gap (or �income de�cit�) for the randomly drawn income X where 1(�)

denotes indicator function. This gives the di¤erence between the income of an individual

and the poverty line and is zero whenever an individual has an income greater than the

poverty line. Further, let Q(p) be the pth quantile of income so that by construction

F (Q(p)) = p: The PGP P is then simply represented as

P (p; z) = E(D(z;X) � 1(X � Q(p))) (2)

= 1(Q(p) � z) � (pz �G(p)) + 1(Q(p) > z) � (F (z)z �G(F (z)))

where G(p) = E(X � 1(X � Q(p))) is the Generalized Lorenz curve, or the mean income

for the poorest 100p% of the population. The curve P gives the average poverty gap

for the poorest 100p% of the population whenever p is a value that is below the head-

count ratio. For values of p above the head-count ratio, the poverty gap pro�le gives

the average poverty gap for the population. The expression in (2) shows that the PGP

can be expressed as the di¤erence between the poverty line z scaled by the cumulative

population share p (zp maps the line of maximal poverty) and the Generalized Lorenz

ordinateG(p) (which is cumulative mean income scaled by cumulative population share p)

over the poor segment of the population, and is equal to the population mean poverty gap

(F (z)z�G(F (z))) for all p at and above the poverty line. This expression demonstrates

the duality between the PGP and the Generalized Lorenz curve de�ned over the poor

segment of the population. Equivalently, the PGP is dual to the Generalized Lorenz curve
2 In addition Yitzhaki (1999) refereed to the curve as the �absolute rotated Lorenz curve�and, in earlier

work on wage discrimination, Jenkins (1991, 1994) labeled the curve the �inverse generalized Lorenz curve�.
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for the censored income distribution minfX; zg. The relationship between the PGP and

the Generalized Lorenz curve highlights that the PGP is a useful graphical device for

depicting key dimensions of poverty for a given income distribution.

As has been shown by Shorrocks (1995) and Jenkins and Lambert (1997) the PGP

curve captures the three fundamental elements of poverty: the point at which the curve

levels out is the head-count ratio, the height of the pro�le at the head-count ratio gives

the average poverty gap (or mean income de�cit for the full population) and the degree of

concavity of the curve indicates the degree of income inequality among the poor segment

of the population. Figure 1 illustrates a typical PGP.

The curve is of interest in its own right, and many popular poverty indices can be

expressed as functionals of the PGP. Further, it has been shown that if the PGP for one

distribution dominates that for another, then all poverty indices which satisfy a set of

basic properties will indicate that there is less poverty in the dominated distribution for
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all values of the poverty line up to z. Our results concerning the empirical PGP could

be used to derive statistical properties of empirical versions of such poverty indices.

The development of the PGP in (2) is based on absolute poverty gaps. A related

approach is to consider relative poverty gaps whereby the poverty de�cit is normalized

by the poverty line DR(z;X) = maxf z�Xz ; 0g = ( z�Xz ) � 1(X � z): Consequently, the

�normalized PGP�is simply equal to the absolute PGP of (2) scaled by 1
z :

PR(p; z) =
P (p; z)

z
= 1(Q(p) � z)�

�
p� G(p)

z

�
+1(Q(p) > z)�

�
F (z)� G(F (z))

z

�
(3)

Below we �rst discuss tests of PGP dominance using the PGP based on absolute poverty

gaps with an estimated z and then discuss how this approach can be extended to tests

based on PR.3

3 Tests of PGP Dominance

We are interested in testing whether there is a dominance relationship between two PGPs

based on two distributions. We use subscripts 1 and 2 on the various curves and poverty

lines to distinguish them apart. Thus for instance the two income distributions are F1

and F2, the two poverty levels are z1 and z2 and so on. With this notation in hand we

can state the hypothesis of interest as follows,

H1
0 : P2(p; z2) � P1(p; z1) for all p 2 [0; 1]:

H1
1 : P2(p; z2) > P1(p; z1) for some p 2 [0; 1]: (4)

The null hypothesis is that the P1 is everywhere at least as large as P2. This will be

referred to as Weak PGP Dominance of P1 over P2. As shown by Jenkins and Lambert

(1997), an implication of this is that poverty will be ranked as more severe in F1 than in

F2 for a wide class of poverty indices. The way that we have set up these hypotheses is

consistent with much of the recent literature on testing stochastic dominance (see McFad-

den (1989), Davidson and Duclos (2000), Barrett and Donald (2003), Linton, Maasoumi

3This approach to poverty measurement is based on a �relative�perspective where the poverty thresh-

old is not de�ned as an absolute standard applicable across distributions but is relative to properties of

the given distribution.
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and Whang (2005)) and Lorenz dominance relations (Dardanoni and Forcina (1999), Bar-

rett, Donald and Bhattacharya (2014)). Here the P1 lies above (strictly, nowhere below)

P2 and in that sense is (weakly) dominant. From a social welfare perspective, the P1 is

closer to the line of maximal poverty than is P2, and thereby implying greater poverty in

F1 compared to poverty in F2. Note that the null hypothesis also includes the case where

the PGP curves coincide. This can occur when the poverty lines are identical and when

the Generalized Lorenz curves up to the poverty line are identical.4 ;5 The alternative is

true whenever P2 is above P1 for some point.

We could just as well reverse the roles of P1 and P2 and test similar hypotheses. This

would allow one to determine whether a PGP curve dominated another in a stronger

sense. In particular if one considered the hypotheses,

H2
0 : P1(p; z1) � P2(p; z2) for all p 2 [0; 1]:

H2
1 : P1(p; z1) > P2(p; z2) for some p 2 [0; 1]: (5)

then the hypotheses H1
0 and H

2
1 together imply the strong dominance of P1 over P2 so

that in principle one could use the tests to determine whether or not there is strong

dominance. Note also that the hypotheses H1
0 and H

2
0 together imply that the PGP

curves are identical. For completeness, it may be of interest to formally test the null

hypothesis of PGP equality,

Heq
0 : P1(p; z1) = P2(p; z2) for all p 2 [0; 1]:

Heq
1 : P1(p; z1) 6= P2(p; z2) for some p 2 [0; 1]:

4 Properties of the Test Statistics

4.1 Estimator for PGP Curve

In this subsection we discuss how to estimate P (p; z) based on a random sample of

n observations drawn from F � these will be denoted by X =fX1; :::; Xng. Let ẑ be

an estimator for z. Let F̂ (x) and Q̂(p) denote the empirical distribution and quantile

4A further implication is that the headcount ratios are identical.
5Another possibility is that F1(x+ a) = F2(x) for all x 2 R and z1 = z2 + a. That is, F1 is a location

shift of F2 and the poverty line z1 is shifted accordingly.
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function of income such that

F̂ (x) =
1

n

nX
i=1

(Xi � x); Q̂(p) = inffx : F̂ (x) � pg:

The empirical poverty gap pro�le can be obtained simply by taking the empirical coun-

terparts of the objects that de�ne P (p; z) to get

P̂ (p; ẑ) =
1

n

nX
i=1

(ẑ �Xi) � 1(Xi � ẑ) � 1(Xi � Q̂(p)):

It is straightforward to see that

P̂ (p; ẑ) = 1(Q̂(p) � ẑ) � (F̂ (Q̂(p))ẑ � Ĝ(p)) + 1(Q̂(p) > ẑ) � (F̂ (ẑ)ẑ � Ĝ(F̂ (ẑ)))

with

Ĝ(p) =
1

n

nX
i=1

Xi � 1(Xi � Q̂(p))

being the empirical Generalized Lorenz Curve at p.

4.2 Test Statistics

Our aim is to make inference regarding PGP dominance based on independent random

samples from two populations. We make the following assumptions.

Assumption 4.1 Assume that:

1. fXj
i g
nj
i=1 is a random sample from Fj and the sample for j = 1 is independent from

the sample for j = 2:

2. the sampling scheme is such that as n1 !1

lim
n1!1

n1n2
n1 + n2

!1; and lim
n1!1

n1
n1 + n2

! � 2 (0; 1)

The �rst part is the standard independent random samples assumption that would be ap-

propriate in situations where we have two separate random samples from non-overlapping

populations, such as countries or regions, or two random samples drawn at two di¤erent

points in time for the same population. Note we allow for di¤ering sample sizes. The

requirement in (ii) is that, for the asymptotic analysis, the number of observations in
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each sample is not �xed as the other grows and it requires that the sample sizes are

growing to in�nity at the same rate. Note that the simple random sampling assumption

can be relaxed in ways that are discussed in Bhattacharya (2005). It is also possible to

allow for dependent sampling, such as with matched-pair sampling with multiple values

for each observational unit, such as with panel data, as considered by Barrett, Donald

and Bhattacharya (2014) for Lorenz dominance testing. For notational simplicity, we

simply write n when taking limits and use n as the subscript when there is no confusion.

With the two independent samples, denote the respective empirical PGPs as P̂1(p; ẑ1)

and P̂2(p; ẑ2). The proposed test of PGP dominance is the Cramer-von Mises type test

with test statistic de�ned as

T̂1 =

r
n1n2
n1 + n2

Z 1

0
max

�
P̂2(p; ẑ2)� P̂1(p; ẑ1); 0

	
dp;

the integral of the positive part of the di¤erence between empirical PGPs with scaling

factor
p
n1n2=(n1 + n2). To derive the limiting null distribution of T̂1, we make the

following assumptions.

Assumption 4.2 Assume that for j=1 and 2

1. zj is an interior point of [xl; xu] where 0 � xl < xu <1.

2. Fj is continuous on [xl; xu] with probability density function fj(x) that is bounded

away from zero on [xl; xu].

The �rst part of the assumption is simply that we know that the poverty line is �nite,

but we allow zj to be known or unknown. For example, zj can be a function of a sample

quantile (e.g. median) or moment (e.g. mean). The second part of the assumption is

that the distribution of income is continuous in a region that is slightly larger than the

interval that contains all incomes below the poverty line. The support of income need

not be �nite since the PGP basically ignores the values of incomes that are above the

poverty line. The requirement that fj(x) is bounded away from zero on [xl; xu] is needed

to allow one to obtain desirable asymptotic properties of the estimated quantile function

estimator on this range.
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Assumption 4.3 Assume that for j = 1 and 2, the estimator ẑj satis�es that

p
nj(ẑj � zj) =

1
p
nj

njX
i=1

 zj (Xji; z) + op(1)

where  zj (Xj ; zj) is measurable with E[ zj (Xj ; zj)] = 0 and E[j zj (Xj ; zj)j
2+�] <1 for

some � > 0.

Assumption 4.3 requires that ẑj is asymptotically normally distributed with vari-

ance equal to V ar( zj (Xj ; zj)): This is not a restrictive assumption. For example, if

zj = E[Xj ] and let ẑj be the mean estimator, then Assumption 4.3 would be satis�ed

with  zj (Xj ; zj) = Xj � zj . If zj is the median and let ẑj be the sample median, then

Assumption 4.3 would be satis�ed with  zj (Xj ; zj) = �fj(zj)�1(1(Xj � zj) � 1=2).

If zj is half of the median and let ẑj be half of the sample median as is the case

in the simulations and empirical studies, then Assumption 4.3 would be satis�ed with

 zj (Xj ; zj) = �0:5fj(2zj)
�1(1(Xj � 2zj)� 1=2).

Let Pj(p) for p 2 [0; 1] denote a Gaussian process with covariance kernel generated

by  Pj (Xj ; p) such that

1. when x` � Q(p) � zj ,

 Pj (Xj ; p) = (zj �Xj) � 1(Xj � Qj(p))� Pj(p; zj)

+ p �  zj (Xj ; zj)� (zj �Qj(p)) � (1(Xj � Qj(p))� p); (6)

2. when zj � Q(p),

 Pj (Xj ; p) = (zj �Xj) � 1(Xj � zj)� Pj(p; zj) + Fj(zj) �  zj (Xj ; zj): (7)

De�ne Po = fp 2 [0; 1] : P1(p; z1) = P2(p; z2)g to be the contact set as in Linton,

Song and Whang (2010).

Proposition 4.4 Given Assumptions 4.1, 4.2 and 4.3, under H1
0 , we have

T̂1
d!
Z
Po

max
�p

�P2(p)�
p
1� �P1(p); 0

	
dp;

where P1 and P2 are two mutually independent Gaussian processes.
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The result that the limiting null distribution only depends on those p�s in the contact

set Po is standard in the literature. In our case, however, the proof is more di¢ cult than

usual. This is due to the fact that we allow for the possibility of estimating the poverty

line and also have to deal with a non-di¤erentiability of the PGP curves at the point zj .

One should note that the result could also be used to derive the statistical properties of

poverty indices that are functionals of the PGP and could be used to develop and justify

inference methods along the lines of Barrett and Donald (2009).

4.3 Critical Value

To describe how we approximate the critical value we �rst describe our simulation method

that is used to approximate the limiting process and also introduce the recentering

method that is commonly employed in the literature to improve the power of a test

for null hypotheses involving inequality constraints. Let fU1ign1i=1 and fU2ig
n2
i=1 denote

two sequences of i.i.d. random variables with mean 0, variance 1 and E[jUjij2+�] < 1

for some � > 0 that are independent of the samples �these could be standard normal

random variables. De�ne the simulated processes P̂uj (p) as

P̂ uj (p) =
1

nj

njX
i=1

Ui �  ̂Pj (Xji; p)

where  ̂Pj (Xji; p) is the estimated in�uence function such that

1. when Q̂(p) � ẑj ,

 ̂Pj (Xji; p) = (ẑj �Xj) � 1(Xj � Q̂(p))� P̂j(p; ẑj) + p �  ̂zj (Xj ; ẑj)

� (ẑj � Q̂j(p)) � (1(Xj � Q̂j(p))� p);

2. when Q̂(p) > ẑj ,

 ̂Pj (Xji; p) = (ẑj �Xj) � 1(Xj � ẑj)� P̂j(p; ẑj) + F̂j(ẑj) �  ̂zj (Xj ; ẑj):

Note that  ̂zj (Xj ; ẑj) is the estimated in�uence function for the estimator of zj . If

zj = E[Xj ], then we have  ̂zj (Xj ; ẑj) = Xji� ẑj . If zj is the median of the distribution of

Xj , then we have  ̂zj (Xj ; ẑj) = �f̂
�1
j (ẑj) � (1(Xij� ẑj)�1=2) where f̂j(ẑj) is a consistent

kernel estimator for fj(zj). If zj is half of the median of the distribution of Xj , then
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we have  ̂zj (Xj ; ẑj) = �0:5f̂
�1
j (2ẑj) � (1(Xij � 2ẑj) � 1=2) where f̂j(2ẑj) is a consistent

kernel estimator for fj(2zj).

We use the recentering method described in Donald and Hsu (2013). The recentering

method is similar to the generalized moment selection method of Andrews and Shi (2013)

and the contact set method of Linton, Song and Whang (2010). These methods are

proposed to improve the power of tests that involve inequality constraints by avoiding

use of the least favorable con�guration. For a sequence of positive numbers an, de�ne

�̂(p) =
�
P̂2(p; ẑ2)� P̂1(p; ẑ1)

�
� 1
�r n1n2

n1 + n2

�
P̂2(p; ẑ2)� P̂1(p; ẑ1)

�
< �an

�
: (8)

De�ne the simulated test statistic as

T̂ u1 =

r
n1n2
n1 + n2

Z 1

0
max

�
P̂ u2 (p)� P̂ u1 (p) + �̂(p); 0

	
dp:

Let � denote the signi�cance level. The simulated critical value is de�ned as

ĉ1�;n = maxf~c1n; �g;

where � is an arbitrarily small positive number, say 10�6 and

~c1n = inf
n
c : P

�
T̂ u1 � c

�
� �

o
;

i.e., ~c1n is the (1� �)-th quantile of T̂ u1 . With the critical value in hand the decision rule

for the test is,

Reject H1
0 , if T̂1 > ĉ1�;n.

This method can also be used to generate p-values by �nding the proportion of simulated

maxfT̂ u1 ; �g that exceed the test statistic value T̂1. A decision rule based on the p-value

would be equivalent to one based on comparing the test statistic to the critical value.

4.4 Size and Power Properties of the Proposed Test

The following result describes the behavior of our test procedure under the null and

alternative hypotheses. To derive this result we impose the following conditions on an.

Assumption 4.5 Let an be a sequence of negative numbers such that limn!1 an = �1

and limn!1 n
�1=2
1 an = 0.
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Theorem 4.6 Suppose that Assumptions 4.1, 4.2, 4.3 and 4.5 hold and we reject H1
0 if

T̂1 > ĉ1�;n. Then,

1. suppose that H1
0 is true and the Lebesgue measure of Po is zero, then limn!1 P (T̂1 >

ĉ1�;n) = 0,

2. suppose that H1
0 is true and the Lebesgue measure of Po is strictly greater than zero,

then lim�!0 limn!1 P (T̂1 > ĉ1�;n) = �, and

3. suppose that H1
1 is true, then limn!1 P (T̂1 > ĉ1�;n) = 1.

The �rst two results describe the size of our test and show that size is no larger than

the nominal size � and that this nominal size is achieved as long as the contact set is

non-empty when � is chosen to be small. The third result shows that the test is consistent

against a �xed alternative.

The test of H2
0 against H

2
1 is exactly analogous to this procedure. The test statistic

for testing Heq
0 against Heq

1 is de�ned as

T̂eq =

r
n1n2
n1 + n2

Z 1

0

��P̂2(p; ẑ2)� P̂1(p; ẑ1)��dp
and it is straightforward to show that under Heq

0

T̂eq
d!
Z 1

0

��p�P2(p)�p1� �P1(p)��dp:
For the signi�cance level �, the simulated critical value is de�ned as

ĉeqn = inf
n
c : P

�
T̂ ueq � c

�
� �

o
where

T̂ ueq =

r
n1n2
n1 + n2

Z 1

0

��P̂ u2 (p)� P̂ u1 (p)��dp:
The decision rule is to �reject Heq

0 when T̂ ueq > ĉeqn ." Critical values can be obtained in a

manner similar to that for the test of weak dominance.
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4.5 Uniform Size Control

As discussed in Andrews and Shi (2013), pointwise asymptotics, as considered above,

may not provide a good approximation to the �nite-sample properties of test statistics

for null hypotheses involving inequality constraints. Hence, in this subsection, we extend

our pointwise results to a uniform result by adopting the methods of Andrews and Shi

(2013).

We �rst modify our recentering function. Let bn be a sequence of positive numbers.

De�ne �̂n(z) as

�̂n(p) = �bn � 1
�r n1n2

n1 + n2

�
P̂2(p; ẑ2)� P̂1(p; ẑ1)

�
< �an

�
: (9)

where an is de�ned as above. Note that �̂n(p) is a modi�cation of �̂(p), where the recenter-

ing parameter
�
P̂2(p; ẑ2)�P̂1(p; ẑ1)

�
is replaced by�bn when

p
n1n2=(n1 + n2)

�
P̂2(p; ẑ2)�

P̂1(p; ẑ1)
�
is less than �an. Following Andrews and Shi (2013), bn will be picked in a

way such that �̂n(z) � P2(p; ẑ2)�P1(p; ẑ1) for all p 2 [0; 1] with probability approaching

one. We de�ne the critical value ĉu�;n as

ĉ1;u�;n = ~c
1;u
�;n + �;

~c1;u�;n = sup

�
q
���P u�r n1n2

n1 + n2

Z 1

0
max

�
P̂ u2 (p)� P̂ u1 (p) + �̂n(p); 0

	
dp � q

�
� 1� �+ �

�
;

where the subscript u denotes the critical value we use to derive the uniformity property

of our test.

We imposes conditions on an and bn that are similar to those in Assumptions GMS1

and GMS2 in Andrews and Shi (2013).

Assumption 4.7 Assume that:

1. an satis�es Assumption 4.5.

2. bn is a sequence of positive numbers such that (i)
p
n1bn is non-decreasing and (ii)

limn!1
p
n1bn=an = 0.

We characterize the set of data generating processes (DGPs) such that our test will

have uniform size. As in the proof of Andrews and Shi (2013), the key is to characterize
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a subset of DGPs that is �compact" in some sense. Note that a PGP curve is fully

characterized by the CDF and the poverty line, and the asymptotics of a PGP estimator

are fully characterized by the CDF, the poverty line and the in�uence function of the

poverty line estimator. Therefore, let � = (F; z;  z) be an index of a DGP. Let � denote

a collection of DGPs such that the following conditions are satis�ed.

Assumption 4.8 Assume that for all � 2 �,

1. F is continuous on [xl; xu] where 0 � xl < xu �M with probability density function

f(x) such that � � f(x) �M for some 0 < � < 1=2 and M > 0,

2. z 2 [xl + �; xu � �] and � � F (z) � 1� �, and

3. the estimator ẑ is such that uniformly over � 2 �,���pn(ẑ � z)� 1p
n

nX
i=1

 z(Xi; z)
��� = op(1)

where  z(X; z) is measurable with E[ z(X; z)] = 0 and E[j z(X; z)j2+�] < M .

Let H2 denote the set of all covariance kernel functions de�ned on ([0; 1� �][ f1g)2.

For each �, let h2;� denote a covariance kernel function on ([0; 1 � �] [ f1g)2 generated

by  P (X; p) such that

1. when 0 � p � 1� �,

 P (X; p) = (z �X) � 1(X � Q(p))� P (p; z)

+ p �  z(X; z)� (z �Q(p)) � (1(X � Q(p))� p); (10)

2. when p = 1

 P (X; 1) = (z �X) � 1(X � z)� P (1; z) + F (z) �  z(X; z): (11)

Obviously, h2;� 2 H2. Let the supremum norm onH2 be dh(h12; h22) = supp0;p002[0;1��][f1g jh12(p0; p00)�

h22(p
0; p00)j for any h12; h22 2 H2. Note that (10) and (11) are used to make it easier to

characterize the set for which our test has uniform size.6 De�ne �2 = � � � where

� satis�es Assumption 4.8 and �20 = f(�1; �2) 2 �2jP1(p; z1) � P2(p; z2) for p 2 [0; 1]g.

That is, �20 is the subset of �
2 such that the null hypothesis holds.

6Please see Appendix for details.
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Theorem 4.9 Suppose Assumption 4.1, 4.7 and 4.8 hold. Then for every compact subset

H2;cpt of H2,

1. lim supn!1 supf(�1;�2)2�20jh2;�1 ;h2;�22H2;cptg P (T̂1 > ĉ1;u�;n) � �, and

2. lim�!0 lim supn!1 supf(�1;�2)2�20jh2;�1 ;h2;�22H2;cptg P (T̂1 > ĉ1;u�;n) = �:

Theorem 4.9 is similar to Theorem 2 and Theorem B1 of Andrews and Shi (2013), and

Theorem 6.1 of Donald and Hsu (2013). The �rst part shows that our test has correct

size uniformly over a set of DGPs and the second part shows that our test is at most

in�nitesimally conservative asymptotically. Similar to the pointwise case, the method

with uniform size control can also be used to generate p-values by �nding the proportion

of simulated T̂ u1 + � that exceed the test statistic value T̂1.

5 Tests for Normalized PGP Dominance

In this section, we brie�y summarize how to test for normalized PGP dominance. Recall

that the normalized PGP curve is de�ned as the corresponding PGP curve divided by

the associated poverty line:

PRj (p; zj) =
Pj(p; zj)

zj
for p 2 [0; 1].

which can be estimated by

P̂Rj (p; ẑj) =
P̂j(p; ẑj)

ẑj
for p 2 [0; 1].

The hypotheses that the normalized PGP curve for the population F1 is everywhere at

least as large as that for the population F2 are de�ned as

H1R
0 : PR2 (p; z2) � PR1 (p; z1) for all p 2 [0; 1]

H1R
1 : PR2 (p; z2) > PR1 (p; z1) for some p 2 [0; 1] (12)

The proposed test statistic for H1R
0 against H1R

1 for normalized PGP dominance is

T̂1;R =

r
n1n2
n1 + n2

Z 1

0
max

�
P̂R2 (p; ẑ2)� P̂R1 (p; ẑ1); 0

	
dp:
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De�ne PRo = fp 2 [0; 1] : PR1 (p; z1) = PR2 (p; z2)g. Under the same conditions and under

H1R
0 , we can show that

T̂1;R
d!
Z
PRo

max
�p

�PR2 (p)�
p
1� �PR1 (p); 0

	
dp;

where PR1 (p) and PR2 (p) are two mutually independent Gaussian processes with covari-

ance kernels generated by  RPj (Xj ; p) such that

 RPj (Xj ; p) =
1

zj

�
 Pj (Xj ; p)� P

R
j (p; zj) �  zj (Xj ; zj)

�
: (13)

This is shown in the Appendix. Therefore a critical value can be constructed in a similar

fashion to that described above for the PGP curve. A test for normalized PGP dominance

with uniform size control can also be constructed using methods similar to those described

above.

6 Monte Carlo Results

In this section we consider a small scale Monte Carlo experiment in which we gauge the

extent to which the preceding asymptotic arguments hold in small samples. We consider

a few cases that illustrate the properties of the tests in a variety of situations and consider

both the size and power properties of the tests. We use distributions in the log-normal

family because they are easy to simulate and have been widely used in empirical work

on income distributions. We generate two sets of samples from two (possibly di¤erent)

distributions. In each case we generate X1 and X2 as (independent) log-normal random

variables using the equations,

X1
i = exp(�1Y1i + �1)

X2
j = exp(�2Y2j + �2)

where the Y1i and Y2j are independent N(0; 1):

The �rst series of experiments consider tests of absolute PGP dominance with the

poverty line estimated using half the sample median. In Case 1, �1 = �2 = 0:85 and

�1 = �2 = 0:6: These parameters generate distributions with means equal to 2:8 and

standard deviations equal to 1:8 �the ratio of which is similar to US CPS income data.

In Case 1 the PGPs for the two populations are identical and we are interested in the size
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properties of the testing procedure. The second case, Case 2, �1 = 0:85; and �1 = 0:6

while �2 = 0:75 and �2 = 0:6. In this case, when using half the sample median as

the poverty line, one can show that the PGP for X2 is below that for X1 (the PGP

curve for 2 lies below that for 1 everywhere except at the origin). In this case we should

expect that we do not reject the hypothesis H1
0 but we should reject H

2
0 . We consider

tests of both of these hypotheses as well as Heq
0 . Note also that in this case we should

expect that the test will reject H1
0 less often than the nominal size of the test because

of the result in Proposition 4.6. In Case 3 �1 = 0:85; and �1 = 0:6 while �2 = 0:85

and �2 = 0:62, resulting in X2 have greater inequality and poverty depth and severity

(though lower incidence) and distribution X2 strongly PGP dominating X1. Therefore

we expect to not reject H2
0 and reject H

1
0 and H

eq
0 . For Case 4, �1 = 0:85; and �1 = 0:6

while �2 = 0:85 and �2 = 0:7: This is similar to Case 3 and is used to examine power as

the violation of the nulls H1
0 and H

eq
0 is larger in this case. Each of these speci�cations

results in poverty incidence or head-count ratios of between 0.12 and 0.16.

In performing the test of poverty dominance we use the decision rule described above

based on the appropriate simulated critical values. For all of the experiments we consid-

ered sample sizes of nj = 200; 500; 1000. The number of simulations used to estimate the

critical values is 1000. To account for estimation of the poverty line by half the sample

median we use,

 zj (Xji; ẑj) = �0:5f̂j(ẑj)
�1�
1
�
Xji � 2ẑj

�
� 1=2

�
where f̂j(2ẑj) is a nonparametric estimator for fj(2zj) such that

f̂j(2ẑj) =
1

nh

njX
i=1

K
�Xji � 2ẑj

hj

�
with K(u) = 3=4(1 � u2) for juj � 1. The bandwidth is set at hj = 1:06�̂jn�1=5j where

�̂j is the sample deviation of the sample j.

We implement the test with uniform size control. For the recentering parameter, we

set

an = �0:1 �
p
0:3(log(n1 + n2)) � �̂j and bn = 0:1

q
n1+n2
n1n2

q
0:4 log(n1+n2)

log(log(n1+n2))
� �̂j for the

PGP dominance case where 0:1
p
0:3(log(n1 + n2)) and 0:1

q
n1+n2
n1n2

q
0:4 log(n1+n2)

log(log(n1+n2))
are

similar to what is suggested in Andrews and Shi (2013) and �̂j is the standard deviation
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of the variable in question. In our simulations, the �̂j is roughly equal to 2 for each case.

For the normalized PGP dominance case, we could use an = �0:1
p
0:3(log(n1 + n2)) �

�̂j
ẑj
and bn =

q
n1+n2
n1n2

q
0:4 log(n1+n2)

log(log(n1+n2))
� �̂jẑj : Since in all of our simulations the ẑj�s

are close to 1 it becomes convenient to use an = �2 �
p
0:3(log(n1 + n2)) and bn =

0:1
q

n1+n2
n1n2

q
0:4 log(n1+n2)

log(log(n1+n2))
for all simulations. We set � = 10�6. The number of points

that we use to approximate the integral is 200. For each experiment the total number of

Monte Carlo replications was set at 1000. The table reports the proportion of times that

the respective null hypothesis was rejected for three di¤erent nominal signi�cance levels

�.

The Monte Carlo results based on the regular PGP curve are contained in Table 1.

Results based on the normalized PGP curve are found in Table 2. In Table 1, Case 1

shows that the tests have actual size close to nominal for all the tests, even with the

smallest sample size considered. In Case 2, the test of PGP dominance is able to detect

the violation of the null H2
0 (and H

eq
0 ), with rejection rates that exceed the nominal size

for all sample sizes and a rejection rate that increases with the sample size. The true null

of H1
0 is rejected less often than the nominal size. In Case 3, the false null H

1
0 is rejected

more often, and the true null H2
0 is rejected less often, than the nominal size of the test.

In Case 4, where there is a stronger PGP dominance of X2 over X1 we see that the

rejection of H1
0 occurs with higher frequency and shows the power of the test. Overall,

these small scale experiments suggest even in small samples the absolute PGP dominance

tests have size and power properties that are consistent with our theoretical results. The

recentering has little impact on the properties of the tests in these speci�cations. The

results based on the normalized PGP�s in Table 2 display similar properties although it

appears in Case 2 that the two normalized PGP�s are very similar since all the tests have

rejection rates close to nominal size.
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Table 1: Monte Carlo Results: Rejection Rates - Absolute PGP

H1
0 H2

0 Heq
0

nj 0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01

Case 1 200 0.110 0.060 0.013 0.094 0.045 0.007 0.106 0.053 0.012

500 0.112 0.057 0.014 0.111 0.055 0.008 0.110 0.052 0.011

1000 0.105 0.050 0.014 0.114 0.067 0.014 0.117 0.054 0.015

Case 2 200 0.069 0.040 0.011 0.169 0.093 0.022 0.131 0.070 0.021

500 0.033 0.013 0.005 0.215 0.133 0.046 0.143 0.092 0.032

1000 0.024 0.011 0.002 0.275 0.166 0.049 0.176 0.100 0.032

Case 3 200 0.173 0.094 0.016 0.074 0.027 0,003 0.123 0.056 0.014

500 0.203 0.108 0.030 0.039 0.022 0.003 0.129 0.075 0.021

1000 0.255 0.163 0.042 0.041 0.020 0.002 0.178 0.100 0.024

Case 4 200 0.484 0.337 0.144 0.010 0.003 0 0.332 0.239 0.087

500 0.692 0.563 0.313 0.001 0 0 0.567 0.456 0.227

1000 0.896 0.814 0.607 0 0 0 0.817 0.738 0.506

21



Table 2. Monte Carlo Results: Rejection Rates - Normalized PGP

H1
0 H2

0 Heq
0

nj 0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01

Case 1 200 0.099 0.051 0.014 0.116 0.061 0.018 0.116 0.069 0.020

500 0.106 0.055 0.009 0.099 0.053 0.016 0.107 0.053 0.013

1000 0.103 0.053 0.005 0.106 0.060 0.013 0.108 0.048 0.012

Case 2 200 0.095 0.050 0.013 0.119 0.066 0.014 0.115 0.056 0.017

500 0.112 0.047 0.005 0.109 0.064 0.011 0.112 0.057 0.008

1000 0.099 0.048 0.015 0.104 0.064 0.015 0.110 0.056 0.014

Case 3 200 0.205 0.105 0.031 0.063 0.038 0.008 0.144 0.086 0.023

500 0.233 0.129 0.046 0.050 0.024 0.005 0.151 0.080 0.030

1000 0.263 0.162 0.056 0.020 0.010 0.001 0.169 0.106 0.030

Case 4 200 0.540 0.400 0.182 0.006 0.004 0.001 0.404 0.307 0.140

500 0.816 0.704 0.441 0 0 0 0.705 0.577 0.365

1000 0.954 0.920 0.769 0 0 0 0.918 0.867 0.691
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7 Empirical Example: Australian Consumption Poverty

1988-2009

In this section we illustrate the methods of testing for poverty dominance relations by as-

sessing contemporary trends in relative consumption poverty in Australia over the period

1988/89-2009/10. The data are from the Australia Bureau of Statistics Household Ex-

penditure Survey (HES) conducted in 1988/89, 1993/94, 1998/99, 2003/04 and 2009/10

(hereafter referenced by the �rst year of the survey period). The welfare concept exam-

ined is consumption as measured by expenditure on the set of non-durables consisting of

food, alcohol and tobacco, fuel, clothing, personal care, medical care, transport, recre-

ation, utilities and current housing services. Current housing services for renters is equal

to rent paid while for home-owners it is imputed from a regression of rent payments

on a series of indicator variables for number of bedrooms and location of residence by

survey year for the subsample of renters. The sample is restricted to families where the

household reference person is 25-60 years of age.

Family consumption is divided by the adult equivalent scale (AES) equal to the

square-root of family size. To minimize reporting errors multiple-family households are

excluded. The HES is a strati�ed random sample and for each observation there is an

associated weight representing the inverse probability of selection into the survey. The

observational weights are multiplied by the number of family members to make the sample

representative of individuals; the adjusted weights were used throughout the analysis.

Summary statistics are reported in Table 3. Nominal prices are in�ated to 2010

real values using the CPI. The mean budget share of the non-durable commodity bundle

was 68 percent in 1988. Over the sample period non-durable consumption grew at an

average annual rate of 2.36 percent. The poverty line in each year is set equal to

half the median consumption level; the growth in median consumption translated into

an increasing absolute value of the poverty threshold over time. Point estimates for

the headcount ratio and mean poverty gap suggest that the incidence and depth of

consumption poverty increased over the 21 year observation period. Plots of the empirical

absolute and normalized PGPs and di¤erences for adjacent surveys, are presented in

Figures 3-12.
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Table 3: HES 1988-2009 Summary Statistics

Year n Consumption Distribution

Mean � Median z
� F (z) E(P ) E(P jP > 0) Modified Sen

1988 4654 173:02 154:68 0:447 0:052 0:825 15:885 0:011

1993 5396 186:50 165:67 0:444 0:038 0:585 15:407 0:007

1998 4645 201:40 179:41 0:445 0:049 0:900 18:545 0:010

2003 4583 215:14 194:85 0:453 0:061 1:204 19:812 0:012

2009 5009 251:42 224:96 0:447 0:067 1:378 20:712 0:012

Table 4 presents the test results based on comparisons of absolute PGPs. The null

hypothesis is that distribution 1 weakly PGP dominated distribution 2, against the al-

ternative that the null is false. In this case we report p-values for each test which

gives the proportion of simulated draws that exceed the calculated test statistic value.

To do this 5000 simulations were used. We account for estimation of the poverty

line using the same method as used in the simulations and use re-centering based on

an = �10
p
0:3(log(n1 + n2)) and bn = 10

q
n1+n2
n1n2

q
0:4 log(n1+n2)

log(log(n1+n2))
since the standard

deviations in of the data sets are close to 100. For the normalized PGP dominance case,

we set an = �0:1
p
0:3(log(n1 + n2)) and bn = 0:1

q
n1+n2
n1n2

q
0:4 log(n1+n2)

log(log(n1+n2))
. We set

� = 10�6. The number of points that we use to approximate the integral is 1,000. The

results were not sensitive to these choices.

The �rst row of Table 4 is for the test with distribution 1 corresponding to 1988

and distribution 2 corresponding to 1993. The results show that the null of H1
0 cannot

be rejected at any conventional level of signi�cance, while H2
0 is rejected at the 5%

level. The p-value for the null of PGP equality Heq
0 of 0.027 also implies rejection at

the 5% levels of signi�cance. These results indicate that the absolute PGPs shifted

down, and consumption poverty unambiguously decreased between 1988 and 1993. The

results concerning the other years suggest that the 1993 consumption distribution PGP

dominated the 1998 distribution. One can reject H1
0 (and H

eq
0 ) in this instance but one

cannot reject H2
0 . This strong PGP dominance of the 1998 distribution over the 1993

distribution implies that poverty rose from 1993 to 1998. A comparison of the 1998

and 2003 distributions show that the 2003 weakly poverty dominated 1998 (though the

null of poverty equality cannot be rejected at the 5% level). Comparing the 2003 and
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2009 consumption distributions show that the none of the null hypotheses considered

can be rejected, which implying that the respective PGPs coincide. Across the full

observation period, the 2003 consumption distribution strongly poverty dominates the

1988 distribution implying an increase in poverty over the two decades.

Table 4: PGP Dominance Test Results

F1 F2 Test Test Statistic P-value Inference

1988 1993 H1
0 0.001 0.650 Pov #

H2
0 11.719 0.014

Heq
0 11.720 0.029

1993 1998 H1
0 15.397 0.004 Pov "

H2
0 0.001 0.665

Heq
0 15.298 0.009

1998 2003 H1
0 14.096 0.028 Pov "

H2
0 0.004 0.626

Heq
0 14.100 0.057

2003 2009 H1
0 8.485 0.168 Pov �

H2
0 0.000 1.000

Heq
0 8.485 0.330

1988 2009 H1
0 26.553 <0.001 Pov "

H2
0 0 1.000

Heq
0 26.553 <0.001
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Table 5: Normalized PGP Dominance Test Results

F1 F2 Test Test Statistic P-value Inference

1988 1993 H1
0 <0.001 0.650 Pov #

H2
0 0.176 0.003

Heq
0 0.176 0.006

1993 1998 H1
0 0.145 0.014 Pov "

H2
0 <0.001 0.657

Heq
0 0.145 0.027

1998 2003 H1
0 0.107 0.080 Pov �

H2
0 <0.001 0.542

Heq
0 0.108 0.154

2003 2009 H1
0 <0.001 0.555 Pov �

H2
0 0.004 0.475

Heq
0 0.005 0.959

1988 2009 H1
0 0.075 0.152 Pov �

H2
0 <0.001 0.585

Heq
0 0.075 0.327

Table 5 contains the test results based on the normalized PGPs with the poverty lines

estimated again using half the sample median. As evident from the �gures, this rescaling

changes the shape of the PGPs and potentially the poverty orderings. As shown by

the test results in Table 5, the normalized PGP comparison also indicate a decline in

consumption poverty from 1988 to 1993, then a reversal to 1998. The relative PGPs

were generally stable from 1998 to 2009, and over the full sample period there was no

discernible change in relative consumption poverty.

8 Conclusion

In this paper we propose methods for testing for poverty dominance relations based on

the empirical Poverty Gap Pro�le. The tests are non�parametric and consistent being

based on global comparisons of the complete PGP at every empirical ordinate. The

proposed test statistics have non-standard, case speci�c limiting distributions and we

26



demonstrate that asymptotically valid inferences could be drawn using simulations. The

tests of poverty dominance are shown to have a good performance in small samples and

were illustrated in the context of an analysis of consumption poverty in Australia over

the period 1988/89-2009/10.
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Appendix A: Implementation Procedure
This appendix describes in detail the algorithm for �nding the appropriate critical

value for testing PGP dominance. We present the critical value for uniform size case and

the critical value for pointwise size control can be obtained similarly.

1. Calculate ẑj , F̂j(x) and Q̂j(p).

2. Calculate the estimated PGP curve P̂j(p; ẑj) as

P̂j(p; ẑj) =
1

nj

njX
i=1

(ẑj �Xj) � 1(Xj � ẑj) � 1(Xj � Q̂j(p))

for an evenly spaced grid on [0; 1] with say 201 points, i.e., [0; 0:005; : : : ; 1].

3. Calculate the test statistic T̂1 by a Riemann sum

T̂1 =

r
n1n2
n1 + n2

200X
k=1

1

200
max

�
P̂2(k=200; ẑ2)� P̂1(k=200; ẑ1); 0

	
:

4. Calculate the recentering function �̂N (p) according to (9) for p 2 [0; 0:005; : : : ; 1].

5. Calculate estimated in�uence function  ̂Pj (p; ẑj) according to (6) and (7) for p 2

[0; 0:005; : : : ; 1].

6. Generate pseudo random variables fU bjig
nj
i=1 from the standard normal distribution

for b = 1; : : : ; B, say B = 1000.

7. Calculate P̂ ubj (p; ẑj) by

P̂ ubj (p; ẑj) =
1

nj

njX
i=1

U bji �  ̂Pj (p; ẑj)

for p 2 [0; 0:005; : : : ; 1] and for b = 1; : : : ; B.

8. Calculate simulated test statistic T̂ ub1 by a Riemann sum

T̂ ub1 =

r
n1n2
n1 + n2

200X
k=1

1

200
max

�
P̂ ub2 (k=200; ẑ2)

� P̂ ub1 (k=200; ẑ1) + �̂N (k=200); 0
	

(14)

for b = 1; : : : ; B.
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9. Rank T̂ ub1 in ascending order, i.e., T̂ u(1)1 � T̂
u(2)
1 � : : : � T̂

u(B)
1 .

10. Let � = 10�6 and calculate ĉ1;u�;n = T̂
u((1��)B)+1
1 + � . That is, if � = 5% and B =

1000, then ĉ1�;n = T̂
u(951)
1 +� and if � = 10% and B = 1000, then ĉ1�;n = T̂

u(901)
1 +�.

11. Reject H1
0 if T̂

ub
1 > ĉ1;u�;n.
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Appendix B: Proofs of Results
Proof of Proposition 4.4: We �rst discuss the asymptotics of the P (p; z) estimators

where we drop the subscripts �rst for notational simplicity. De�ne �p = F (z) and pu =

F (xu).

Let w(X; s; s0) = (s�X) � 1(X � s) � 1(X � s0) where s; s0 2 [xl; xu]. It is straightfor-

ward to see that fw(X; s; s0) : s; s0 2 [xl; xu]g is a Donsker class with envelope function

2xu that is of �nite second moment. Then by functional central limit theorem as in van

der Vaart and Wellner (1996), we have

1p
n

nX
i=1

�
w(Xi; s; s

0)� E[w(X; s; s0)]
�
)W(s; s0)

where W(s; s0) is a Gaussian process with covariance kernel generated by w(X; s; s0).

This implies that

sup
s;s02[xl;xu]

��� 1
n

nX
i=1

w(Xi; s; s
0)� E[w(X; s; s0)]

��� p! 0:

Note that as in (2), we have

E[w(X; s; s0)] = 1(s0 � s) � (F (s0)s�G(F (s0))) + 1(s0 > s) � (F (s)s�G(F (s))

= F (minfs0; sg)s�G(F (minfs0; sg)):

Then for p 2 [0; pu] with pu = F (xu), P (p; z) = E[w(X; z;QF (p))] and

P̂ (p; ẑ) =
1

n

nX
i=1

w(Xi; ẑ; Q̂(p)):

Given that E[w(X; s; s0)] is uniformly continuous on [xl; xu]2, ẑ
p! z and supp2[0;pu] jQ̂(p)�

Q(p)j p! 0, it follows that supp2[0;pu] jP̂ (p; ẑ) � P (p; z)j p! 0. Let �n be a sequence of

positive numbers with �n ! 0 and
p
n�n !1. We claim that

lim
n!1

P
�
sup

p��p��n
Q̂(p) < ẑ

�
= 1; lim

n!1
P
�
inf

p��p+�n
Q̂(p) > ẑ

�
= 1: (15)

We show the �rst result with the argument for the second one being similar. Let �n =

z �Q(p� �n) and note that it is straightforward to see that �n ! 0 and
p
n�n !1. It

is also true that supp��p��n
p
njQ̂(p)�Q(p)j = Op(1) and

p
n(ẑ � z) = Op(1). Then the
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�rst result in (15) follows since,

sup
p��p��n

p
n(Q̂(p)� ẑ)

� sup
p��p��n

p
n(Q̂(p)�Q(p)� ẑ + z) + sup

p��p��n

p
n(Q(p)� z)

�Op(1)�
p
n�n ! �1:

Next, we derive the asymptotic properties of
p
n(P̂ (p; ẑ)� P (p; z)). Note that

p
n(P̂ (p; ẑ)� P (p; z))

=
1p
n

nX
i=1

�
w(Xi; ẑ; Q̂(p))� E[w(X; ẑ; Q̂(p))]

�
+
p
n
�
E[w(X; ẑ; Q̂(p))]� P (p; z)

�
=
1p
n

nX
i=1

�
w(Xi; ẑ; Q̂(p))� E[w(X; ẑ; Q̂(p))]

�
+
p
n
n
F (minfQ̂(p); ẑg)ẑ �GF (F (minfQ̂(p); ẑg))

�
�
F (minfQ(p); zg)z �G(F (minfQ(p); zg))

�o
� I1 + I2:

Note that

I1 =
� 1p

n

nX
i=1

�
w(Xi; ẑ; Q̂(p))� E[w(X; ẑ; Q̂(p))]

�
� 1p

n

nX
i=1

�
w(Xi; z;Q(p))� E[w(X; z;Q(p))]

�
+

1p
n

nX
i=1

�
w(Xi; z;Q(p))� E[w(X; z;Q(p))]

�
=

1p
n

nX
i=1

�
w(Xi; z;Q(p))� E[w(X; z;Q(p))]

�
+ op(1); (16)

where the op(1) result holds because of the stochastic equicontinuity of the empirical

process. This results holds uniformly over p 2 [0; pu]. For the second term, we need

to consider three cases: (a) p � �p � �n, (b) p > �p + �n and (c) jp � �pj < �n be-

cause F (minfs0; sg)s � G(F (minfs0; sg)) is not di¤erentiable at s = s0: For case (a),
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minfQ(p); zg = Q(p) and by (15), we have

p
n
�
F (minfQ̂(p); ẑg)ẑ �G(F (minfQ̂(p); ẑg))

�
�
F (minfQ(p); zg)z �G(F (minfQ(p); zg))

��
=
p
n
�
F (Q̂(p))ẑ �G(F (Q̂(p)))�

�
F (Q(p))z �G(F (Q(p)))

��
+ op(1)

=
p
n
�
F (Q̂(p))ẑ � F (Q(p))z

�
+
p
n
�
G(F (Q̂(p)))�G(F (Q(p)))

�
+ op(1)

=
p
n
�
p � (ẑ � z) + z � f(Q(p))(Q̂(p)�Q(p))

�
+ op(1)

�
p
n
�
Q(p) � f(Q(p)) � (Q̂(p)�Q(p))

�
+ op(1)

=p �
p
n(ẑ � z) + (z �Q(p)) � f(Q(p))

p
n(Q̂(p)�Q(p)) + op(1)

=
1p
n

nX
i=1

�
p �  z(Xi; z)� (z �Q(p)) � (1(Xi � Q(p))� p)

�
+ op(1): (17)

Therefore, (16) and (17) together imply

sup
p��p��n

���pn(P̂ (p; ẑ)� P (p; z))� 1p
n

nX
i=1

��
w(Xi; z;Q(p))� E[w(X; z;Q(p))]

�
+ p �  z(Xi; z)� (z �Q(p)) � (1(Xi � Q(p))� p)

���� = op(1): (18)

Similarly, for case (b), we have

p
n
�
F (minfQ̂(p); ẑg)ẑ �G(F (minfQ̂(p); ẑg))

�
�
F (minfQ(p); zg)z �G(F (minfQ(p); zg))

��
=
p
n
�
F (ẑ)ẑ �G(F (ẑ))�

�
F (z)z �G(F (z))

��
+ op(1)

=
p
n
�
F (ẑ)ẑ � F (z)z

�
+
p
n
�
G(F (ẑ))�G(F (z))

�
+ op(1)

=
p
n
�
(F (z) + zf(z)) � (ẑ � z)

�
+ op(1)�

p
n
�
zf(z) � (ẑ � z)

�
+ op(1)

=F (z)
p
n(ẑ � z) + op(1): (19)

We also have

sup
p��p+�n

���pn(P̂ (p; ẑ)� P (p; z))
� 1p

n

nX
i=1

�
w(Xi; z;Q(p))� E[w(X; z;Q(p))] + F (z) �  z(Xi; z)

���� = op(1):

(20)
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For case (c), it is straightforward to see that

sup
jp��pj��n

���pn(P̂ (p; ẑ)� P (p; z))��� = Op(1): (21)

Note that for pu � p � 1,

sup
p�pu

j
p
n(P̂ (p; ẑ)� P (p; z))�

p
n(P̂ (pu; ẑ)� P (pu; z))j = op(1:)

To obtain the result in Proposition 4.4 let p1 = F1(z1) and p2 = F2(z2) and without

loss of generality, we derive the result for the case where p1 = p2 = pm, z1 = z2 and

P1(p; z1) = P2(p; z2) for all p 2 [0; 1]. Note that in this case, Po = [0; 1]. Proofs for cases

where there exist points such that P2(p; z2) < P1(p; z1) is similar to that of Lemma 2.1

of Donald and Hsu (2015). Note that

T̂1 =

r
n1n2
n1 + n2

Z 1

0
max

�
P̂2(p; ẑ2)� P̂1(p; ẑ1); 0

	
dp

=

r
n1n2
n1 + n2

Z pm+�n

pm��n
max

�
P̂2(p; ẑ2)� P̂1(p; ẑ1); 0

	
dp

+

r
n1n2
n1 + n2

Z pm��n

0
max

�
P̂2(p; ẑ2)� P̂1(p; ẑ1); 0

	
dp
�

+

r
n1n2
n1 + n2

Z 1

pm+�n

max
�
P̂2(p; ẑ2)� P̂1(p; ẑ1); 0

	
dp

= T̂11 + T̂12 + T̂13 (22)

Note that given that �n ! 0 andr
n1n2
n1 + n2

sup
p2[0;1]

���P̂2(p; ẑ2)� P̂1(p; ẑ1)��� = Op(1);

we have T̂11 = op(1). Also,

T̂12 =

r
n1n2
n1 + n2

Z pm��n

0
max

n 1
n2

n2X
i=1

 P2(X2i; p)�
1

n1

n1X
i=1

 P1(X1i; p); 0
o
+ op(1)

=

r
n1n2
n1 + n2

Z pm

0
max

n 1
n2

n2X
i=1

 P2(X2i; p)�
1

n1

n1X
i=1

 P1(X1i; p); 0
o
+ op(1)

=

Z pm

0
max

nr n1
n1 + n2

1
p
n2

n2X
i=1

 P2(X2i; p)�
r

n2
n1 + n2

1
p
n1

n1X
i=1

 P1(X1i; p); 0
o
+ op(1)

D!
Z pm

0
max

�p
�P2(p)�

p
1� �P1(p)

	
dp (23)
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where the �rst equality follows from (18) and (20), the second equality holds for reasons

similar to the result that T̂11 is op(1). The last line follows from continuous mapping

theorem and the fact thatr
n1

n1 + n2

1
p
n2

n2X
i=1

 P2(X2i; p)�
r

n2
n1 + n2

1
p
n1

n1X
i=1

 P1(X1i; p)

)
p
�P2(p)�

p
1� �P1(p)

and
R
Po
f�; 0gdp is a continuous functional. By the same argument, we can show that

T̂13 =

r
n1n2
n1 + n2

Z 1

pm+�n

max
n 1
n2

n2X
i=1

 P2(X2i; p)�
1

n1

n1X
i=1

 P1(X1i; p); 0
o
+ op(1)

=

r
n1n2
n1 + n2

Z 1

pm+�n

max
n 1
n2

n2X
i=1

 P2(X2i; p)�
1

n1

n1X
i=1

 P1(X1i; p); 0
o
+ op(1)

D!
Z 1

pm

max
�p

�P2(p)�
p
1� �P1(p)

	
dp:

Therefore, we have

T̂1
D!
Z 1

0
max

�p
�P2(p)�

p
1� �P1(p)

	
dp:

Proof of Theorem 4.6: The proof of Theorem 4.6 (i) and (ii) is similar to that

for Theorem 4.1 in Donald and Hsu (2013) except that we need to allow for the non-

di¤erentiability around F1(z1) and F2(z2). This can be handled with the same argument

as in Proposition 4.4. The proof of Theorem 4.6 (i) is similar to that for Theorem 4.2 in

Donald and Hsu (2013).

Proof of Theorem 4.9: Let H1 denote the set of all functions from [0; 1] to [�1; 0].

Let h = (h1; h2), where h1 2 H1 and h2 2 H2, and de�ne

T (h) =

Z 1

0
maxf(	h2(z) + h1(z)); 0gdp:

De�ne c0(h1; h2; 1 � �) as the (1 � �)-th quantile of T (h). The key is to show that for

any sequence of (�1;`n ; �2;`n) 2 f�20jh2;�1 ; h2;�2 2 H2;cptg, there is a further subsequence

kn of `n such that (a)
�
(F1;kn ; z1;kn); F2;kn ; z2;kn)

�
!
�
(F �1 ; z

�
1); F

�
2 ; z

�
2)
�
such that the null

hypothesis holds, and (b) h2;�1;kn ! h�2;1 2 H2;cpt and h2;�2;kn ! h�2;2 2 H2;cpt. Note that

(a) is implied by Assumption 4.8 since for all n, (F1;`n ; F2;`n) belongs to a compact subset

by the Arzelà-Ascoli Theorem, e.g., Theorem 6.2.61 of Corbae, Stinchcombe and Zeman

(2009). So does (z1;`n ; z2;`n). Also (b) holds because we impose H2;cpt.
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De�ne ~h�12 (p
0; p00) = h�12 (p

0; p00) if p0; p00 2 [0; F1(z1)], ~h�12 (p0; p00) = h�12 (p
0; 1) if p0 2

[0; F1(z1)] and p00 2 (F1(z1); 1], and ~h�12 (p0; p00) = h�12 (p
0; 1) if p0; p00 2 (F1(z1); 1]. Also,

~h�12 (p
0; p00) = ~h�12 (p

00; p0). It is true that if h2;�1;kN ! h�2;��1
2 H2;cpt, then ~h2;�1;kn !

~h�2;��1
. De�ne h�1;�21;n =

p
n1n2=(n1 + n2)(P1(p) � P2(p)) and h

�1;�2
1;n belongs to H1 under

the null hypothesis. Also, ~h�1;�22 = � � ~h2;�1 + (1 � �)~h2;�2 . Note that under pointwise

asymptotics, ~h�1;�22 is the covariance kernel of the limiting Gaussian processes in the

integral in Proposition 4.4.

As in Lemma A2 of Andrews and Shi (2013), we can show that for any ~� > 0,

lim supn!1 sup
(�1;�2)2f�20jh2;�1 ;h2;�22H2;cptg

P
�bT 1 > c0

�
h�1;�21;n ; ~h�1;�22 ; 1��

�
+ �
�
� �; (24)

Also, as in Lemma A3 of Andrews and Shi (2013), we can show that for all � > 0

lim supn!1 sup
(�1;�2)2f�20jh2;�1 ;h2;�22H2;cptg

P
�
c0
�r n1n2

n1 + n2
�n;

~h�1;�22 ; 1� �
�

< c0(h
X;Y
1;n ; h

�1;�2
2 ; 1� �)

�
= 0: (25)

Note that the discontinuity issue can be handled in the same fashion as in the proof of

Theorem 4.6.

To complete the proof, we can follow Donald and Hsu (2013) to show that for all

0 < ~� < �,

lim supn!1 sup
(�1;�2)2f�20jh2;�1 ;h2;�22H2;cptg

P
�
ĉ1;u�;n < c0(

r
n1n2
n1 + n2

�n;
~h�1;�22 ; 1��)+~�

�
= 0:

(26)

The result in Theorem 4.9 can then be shown by combining (24), (25) and (26). The

proof for the second part is identical to that for the second part of Theorem 6.1 of Donald

and Hsu (2013).
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Proof of (13): Note that uniformly over p 2 [0; 1],

p
nj(P̂

R
j (p; ẑj)� PRj (p; zj))

=
p
nj

� P̂j(p; ẑj)
ẑj

� Pj(p; zj)

zj

�
=
p
nj

�� 1
ẑj
� 1

zj

�
P̂j(p; ẑj) +

1

zj

�
P̂j(p; ẑj)� Pj(p; zj)

��
=
p
nj
1

zj

�
P̂j(p; ẑj)� Pj(p; ẑj)

�
+
p
njPj(p; zj)

� 1
ẑj
� 1

zj

�
+ op(1)

=
p
nj
1

zj

�
P̂j(p; ẑj)� Pj(p; zj)

�
�pnj

Pj(p; zj)

z2j

�
ẑj � zj

�
+ op(1)

=
p
nj
1

zj

�
P̂j(p; ẑj)� Pj(p; zj)� PRj (p; zj)

�
ẑj � zj

��
+ op(1);

where the third equality holds because supp2[0;1] jP̂j(p; ẑj)�Pj(p; zj)j = op(1), the fourth

equality is obtained by applying the delta method on 1=ẑj and the last equality holds

because PRj (p; zj) = Pj(p; zj)=zj . Then by the same argument for Proposition 4.4, the

result follows.

36



References

Andrews, D. W. and X. Shi (2013), �Inference Based on Conditional Moment Inequalities,�

Econometrica, 81, 609-666.

Atkinson, A. B. (1987), �On the Measurement of Poverty,�Econometrica, 55, 749-764.

Barrett, G. F. and S. G. Donald (2003), �Consistent Tests for Stochastic Dominance,�Econo-

metrica, 71, 71-104.

Barrett, G. F. and S. G. Donald (2009), �Statistical Inference with Generalized Gini Indices of

Inequality, Poverty and Welfare,�Journal of Business and Economic Statistics, 27, 1-17.

Barrett, G. F., S. G. Donald and D. Bhattacharya (2014), �Consistent Nonparametric Tests for

Lorenz Dominance,�Journal of Business and Economic Statistics, 32, 1-13.

Bhattacharya, D. (2005), �Asymptotic Inference from Multi-stage Samples,�Journal of Econo-

metrics, 126, 145-171.

Corbae, D., M. B. Stinchcombe, and J. Zeman (2009). An Introduction to Mathematical Analysis

for Economic Theory and Econometrics, Princeton University Press.

Dardanoni, V. and A. Forcina (1999), �Inference for Lorenz curve orderings,�Econometrics Jour-

nal, 2, 49-75.

Davidson, R. and J-Y. Duclos (2000), �Statistical Inference for Stochastic Dominance and for the

Measurement of Poverty and Inequality,�Econometrica, 68, 1435-1464.

Donald, S. G. and Y.-C. Hsu (2013), �Improving the Power of Tests of Stochastic Dominance,�

forthcoming in Econometric Reviews.

Jenkins, S. P. (1991), �Aggregation Issues in Earnings Discrimination Measurement,�Economics

Discussion Paper ,University of Bath.

Jenkins, S. P. (1994), �Earnings Discrimination Measurement: a Distributional Approach ,�

textitJournal of Econometrics, 61, 81-102.

Jenkins, S. P. and P. J. Lambert (1997), �Three �I�s of Poverty Curves, With an Analysis of UK

Poverty Trends,�Oxford Economic Papers, 49, 317-327.

37



Jenkins, S. P. and P. J. Lambert (1998a), �Ranking Poverty Gap Distributions: Further TIPs for

Poverty Analysis,�Research on Economic Inequality, 8, 31-38.

Jenkins, S. P. and P. J. Lambert (1998b), �Three �I�s of Poverty Curves and Poverty Dominance:

TIPs for Poverty Analysis,�Research on Economic Inequality, 8, 39-56.

Linton, O., E. Maasoumi and Y.-J. Whang (2005), �Consistent Testing for Stochastic Dominance:

A Subsampling Approach,�Review of Economic Studies, 72, 735-765.

Linton, O., K. Song and Y.-J. Whang (2010), �An Improved Bootstrap Test of Stochastic Dom-

inance,�Journal of Econometrics, 154, 186-202.

McFadden, D. (1989), �Testing for Stochastic Dominance�in Studies in the economics of uncer-

tainty: In honor of Josef Hadar, Fomby,T-B, and Seo,T-K, eds. New York; Berlin; London

and Tokyo: Springer, 113-34.

Ravallion, M. (1994), Poverty Comparisons, Harwood Academic Publishers, Chur Switzerland.

Sen, A. (1976), �Poverty: an Ordinal Approach to Measurement,�Econometrica, 44, 219-231.

Shorrocks, A. F. (1995), �Revisiting the Sen Poverty Index,�Econometrica, 63 1225-1230.

Shorrocks, A. F. (1998), �Deprivation Pro�les and Deprivation Indices� in The distribution of

welfare and household production: International perspectives, Jenkins, S. P., A. Kapteyn

and B. van Praag eds. Cambridge, Cambridge University Press.

Van der Vaart, A. W. and J. A. Wellner (1996), Weak Convergence and Empirical Processes:

With Applications to Statistics, Springer-Verlag New York.

Yitzhaki, S. (1999). �Necessary and Su¢ cient Conditions for Dominance Using Generalized

Lorenz curves,�In: Advances in Econometrics, Income Distribution and Scienti�c Method-

ology: Essays in Honor of Camilo Dagum ,D .J . Slottje (eds.), Physica-Verlag: Heidelberg.

38












