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This supplement contains two appendices. Supplemental Appendix A addresses

some computational issues. Supplemental Appendix B gives proofs of the results in the

main paper.

Appendix A: Computational Issues

A.1 Distributions and Partial Integrals

Here we describe the computational properties of the conditional CDF based on the

semi-parametric method as well as the single index and nonparametric methods. In the

case of the semiparametric method, where for sake of generality we allow for the weighted

version, we can write the estimator as,

F̂ (y|x) =
1

N

N∑
i=1

1
(
ε̂i ≤

log y − x′θ̂
h(x′θ̂)

)
=

1

N

N∑
i=1

1(h(x′θ̂)ε̂i + x′θ̂ ≤ log y)

=
1

N

N∑
i=1

1
(

exp
(
h(x′θ̂)ε̂i + x′θ̂

)
≤ y
)

=
1

N

N∑
i=1

1
(
yi(x, θ̂) ≤ y

)
Using the same arguments as Davidson and Duclos (2000) we can show that,

IJ(y; F̂ (y|x)) =
1

N

N∑
i=1

1

(J − 1)!
(y − yi(x, θ̂))J−11(yi(x, θ̂) ≤ y)

This follows since the conditional distribution estimate, like the unconditional empirical

distribution is a step function, with jumps occurring at the values yi(x, θ̂) where the

latter depend on the value x as well as the parameter estimate θ̂.

For the single index model and the non-parametric model we may represent the

estimator in each case as,

F̂ (y|x) =
N∑
i=1

ŵih1(Yi ≤ y)
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where in the case of the single index model m = 1 and the weights are,

ŵih =
K
(
v̂1−V̂i
h

)
∑N

i=1K
(
v̂1−V̂i
h

)
while for the nonparametric method m = p and,

ŵih =
K
(
x−Xi
h

)∑N
i=1K

(
x−Xi
h

)
Noting the similarity in the dependence of this object on y as for the empirical distribution

and the semi-parametric method we have that,

IJ(y; F̂ (y|x)) =
N∑
i=1

ŵih
1

(J − 1)!
(y − Yi)J−11(Yi ≤ y)

A.2 Computing Lorenz Curves

The computation of conditional Lorenz curves for the semiparametric, single index

and non-parametric conditional distributions is straightforward since in each case the

conditional distributions are step functions. This implies that the conditional quantiles

will also be step functions and then Lorenz curves will be piecewise linear convex func-

tions. For the semiparametric method described in Section 2.2 denote the distinct values

of yi(x, θ̂) = exp(ε̂ih(x′θ̂) + x′θ̂) by the values,

0 < y1 < y2... < yN∗ < yu

where N∗ ≤ N (and will equal N when the residuals are all distinct). Also, let

π̂j(x) =
1

N

N∑
i=1

1(yi(x, θ̂) = yj)

be the proportion of observations whose yi(x, θ̂) value equals yj. Then the conditional

CDF can be written as,

F̂ (y|x) =
∑
j:yj≤y

π̂j(x) =



0 for y ∈ [0, y1)
π̂1(x) for y ∈ [y1, y2)
π̂1(x) + π̂2(x) for y ∈ [y2, y3)
...
1 for y ≥ yN∗
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Then the conditional quantile function can be simply obtained as,

q̂(p|x) =



y1 for p ∈ [0, F̂ (y1|x)]

y2 for p ∈ (F̂ (y1|x), F̂ (y2|x)]

y3 for p ∈ (F̂ (y2|x), F̂ (y3|x)]
...

yN∗ for p ∈ (F̂ (yN∗−1|x), 1]

This can be written compactly as,

q̂(p|x) =

N∗∑
j=1

1(p ∈ (F̂ (yj−1|x), F̂ (yj|x)])yj

where we define F̂ (y0|x) = 0 and F̂ (yN∗|x) = 1. Note that given the definition of

yi(x, θ̂) we can write q̂(p|x) = exp(q̂ε(p)h(x′θ̂) + x′θ̂) where q̂ε(p) is the pth quantile of

the residuals. The Generalized Lorenz curve can then be calculated by integrating the

step function defined by q̂(p|x) to get for p such that p ∈ [F̂ (yj−1|x), F̂ (yj|x))

Ĝj(s|x) = (p− F̂ (yj−1|x))yj +

j−1∑
l=1

π̂l(x)yl

so that for arbitrary p ∈ [0, 1]

Ĝ(p|x) =
Ṅ∑
j=1

1(F̂ (yj−1|x) ≤ p < F̂ (yj|x))Ĝj(p|x)

and where,

Ĝ(1|x) =
N∗∑
l=1

π̂l(x)yl

Note that this is simply,

1

N

N∑
i=1

yi(x, θ̂) =
1

N

N∑
i=1

exp(ε̂ih(x′θ̂) + x′θ̂) = exp(x′θ̂)
1

N

N∑
i=1

exp(ε̂ih(x′θ̂))

which is the natural estimator of the conditional mean of Y given X = x based on a

log-linear model relating Y to X. Also, note that the GLC is a piecewise linear and

continuous function. The LC can be calculated as the integral of the quantile process

and is given by,

L̂(p|x) =
Ĝ(p|x)

Ĝ(1|x)
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and is also a piecewise linear function. As noted earlier, in the unweighted case where

h(.) = 1 then the Lorenz curve does not depend on x.

The GLC and LC for the single index model and the nonparametric model can be

computed in an analogous fashion. For each method denote the (ordered) distinct sample

values for the Yi by yj (which will be different from the values used in the computation

of the GLC and LC for the semiparametric method) so that,

yl ≤ y1 < y2 < ... < yṄ ≤ yu

where Ṅ ≤ N is the number of distinct values in the sample. Then given this notation,

the function F̂ (y|x) is a step function with increments,

π̂j(x) =
N∑
i=1

ŵi,h1(Yi = yj)

occurring at each of the yj values where ŵi,h was defined for each estimator in the previous

section. Therefore, as was the case for the semiparametric method the estimator F̂ (y|x)

takes on the value
∑j

l=1 π̂j(x) on the interval [yj, yj+1). The quantile function, the GLC

and the LC can then be defined in the same form as the semiparametric method.

A.3 Computing Generalized Gini Coefficients

Since the LC for the three main methods is piecewise linear it is straightforward

to used the calculations in Barrett and Donald (2009) for calculating generalized Gini

inequality measures. Here, due to space limitations we focus on the S-Gini index of

relative inequality which, conditional on x, is defined as,

IδR(x) = 1− δ(δ − 1)

∫ 1

0

(1− p)δ−2L(p|x)d(p)

= 1−
δ
∫ 1
0

(1− p)δ−1Q(p|x)d(p)

G(1|x)

where δ is chosen by the researcher — δ = 2 gives the standard Gini index of relative

inequality. Using analogous calculations to those in Barrett and Donald (2009) one can

show that,

ÎδR(x) = 1− δ
∑Ṅ

j=1 yj
{

(1− p̂j−1))δ − (1− p̂j)δ
}

Ĝ(1|x)
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where
∑j

l=1 π̂j = p̂j and where the π̂j depend on the particular method as defined in

the previous subsection. Given the linearity of the index in the LC arguments similar to

those in Barrett and Donald (2009) can be used to show that,

√
N(ÎδR(x)− IδR(x))

d→ −δ(δ − 1)

∫ 1

0

(1− p)δ−2L(·)d(p) ∼ N (0, V (x))

for some asymptotic variance V (x) which can be computed using the influence functions

described in the next section. Indeed, since the influence functions have a similar form

to those in the unconditional case (the semi-parametric method being slightly different),

very similar calculations can be used.

A.4 Computing Influence Functions for Quantile Process and

Lorenz Curves

To compute the influence function for the quantile process for each case we use the

appropriate influence function and the general form given in (5). For the semi-parametric

method since,

f̂(q̂(p|x)|x) = f̂ε(log q̂(p|x)− x′θ̂) = f̂ε(q̂ε(p))

this becomes,

φi(p|x; q̂) =
p− 1(Yi ≤ q̂(p|x))

f̂ε(log q̂(p|x)− x′θ̂)
− (X − x)′φ(Yi, Xi, θ̂)

For the single index model the influence functions can be written in the following form,

φi(p|x; q̂) =
1√
h

K
(
v̂1−V̂i
h

)
ĝ(v̂1, θ̂)

(
p− 1(Yi ≤ q̂(p|x))

f̂(q̂(p|x)|x)

)
and,

φi(p|x; q̂) =
1√
hd

K
(
x−Xi
h

)
ĝ(x)

(
p− 1(Yi ≤ q̂(p|x))

f̂(q̂(p|x)|x)

)
These can be used to estimate pointwise variances. Also we can compute influence

functions for the GLC and LC’s using the forms in (6) and (7). For the GLC based on

the semi-parametric method we have,

φi(p|x; Ĝ) = (pq̂(p|x)− Ĝ(p|x))− 1(Yi ≤ q̂(p|x))(q̂(p|x)− Yi)− p(X − x)′φ(Yi, Xi, θ̂)
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The first two terms in this expression are the natural extension of the influence function

given in Barrett and Donald (2009) to the case where one conditions on x but knows the

population value of θ0. The last term is the effect on the influence function of having to

estimate θ0. For the single index and non-parametric models we obtain respectively,

φi(p|x; Ĝ) =
1√
h

K
(
v̂1−V̂i
h

)
ĝ(v̂1, θ̂)

(
(pq̂(p|x)− Ĝ(p|x))− 1(Yi ≤ q̂(p|x))(q̂(p|x)− Yi)

)
and,

φi(p|x; Ĝ) =
1√
hd

K
(
x−Xi
h

)
ĝ(x)

(
(pq̂(p|x)− Ĝ(p|x))− 1(Yi ≤ q̂(p|x))(q̂(p|x)− Yi)

)
Given the definition of quantile processes and Ĝ these can easily be calculated. Also, the

influence functions for LC’s can easily be obtained from these using (7).

Appendix B: Proofs of Results

Proof of Theorem 1: We have

√
N(F (·|x, θ̂)− F (·|x, θ0))

=∇θF (·|x, θ0)′
√
N(θ̂ − θ0) +

√
N(θ̂ − θ0)′∇θθ′F (·|x, θ∗)(θ̂ − θ0)

=∇θF1(·|x, θ0)′
√
N1(θ̂ − θ0) + op(1) = ∇θF1(·|x, θ0)′

1√
N

N∑
i=1

φ1(Yi, Xi, θ0) + op(1)

=
1√
N

N∑
i=1

∇θF (·|x, θ0)′φ(Yi, Xi, θ0) + op(1).

The first equality follows from the second-order mean-value expansion of F (·|x, θ̂) at θ0

and θ∗ is the mean-value. The second equality holds since ∇θθ′F is bounded over y and

(θ̂ − θ0) = Op(N
−1/2). The third equality follows from (1) of Assumption 2 and the

boundedness of ∇θF .

By Kosorok (2008), we have that the class {a′φ(x)}|a ∈ Rp} is a Vapnik-Cervonenkis

class and this implies that it is P-Donsker. Given ∇θF (y|x, θ0) is a continuous function

of y on Rp, we have
√
N(F (·|x, θ̂)− F (·|x, θ0))⇒ X (·).
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which shows Theorem 1.2

Proof of Theorem 2: The first part follows from the fact that Ω̂
p→ Ω. To show the

second part, given θ̂
p→ θ0 and for fixed x, ∇θF is continuous on B(θ0)× Y , we have

sup
y∈Y
|∇θF (y|x, θ̂)−∇θF (y|x, θ)| = op(1).

By applying Theorem 2.1 of Kosorok (2008) conditional on the sample path, we can show

that X u(·)⇒ X (·). 2

Proof of Lemma 1: We have

Fy(y|X = x) = E[1(Y ≤ y)|X = x] = E[1(exp(X ′θ0 + ε) ≤ y)|X = x]

= E[1(exp(x′θ0 + ε) ≤ y)] = E[1(ε ≤ log y − x′θ0)] = Fε(log y − x′θ0).

By the definition of the conditional CDF, we have the first equality and by rewriting Y

in terms of X and ε, we have the second equality. By independence between X and ε, we

get the third equality. The fourth equality follows from the fact that exp(x′θ0 + ε) ≤ y

if and only if ε ≤ log y − x′θ0. The last equality follows from the definition of the Fε. 2

Proof of Theorem 3: By Linton et al. (2005), we have
√
N(F̂ε(·) − Fε(·)) ⇒ Xε(·)

where Xε(·) is a mean zero Gaussian process with covariance kernel generated by 1(ε ≤

·)− Fε(·) + fε(·)E[X]′φ(Y,X, θ0).

For a given x, F̂y(y|x) = F̂ε(log y − x′θ̂) and Fy(y|x) = Fε(log y − x′θ0). Hence,

√
N(F̂y(y|x)− Fy(y|x)) =

√
N(F̂ε(log y − x′θ̂)− Fε(log y − x′θ0))

=
√
N
(

(F̂ε(log y − x′θ̂)− Fε(log y − x′θ̂))

− (F̂ε(log y − x′θ0)− Fε(log y − x′θ0))
)

(11)

+
√
N(F̂ε(log y − x′θ0)− Fε(log y − x′θ0) (12)

+
√
N(Fε(log y − x′θ̂)− Fε(log y − x′θ0)). (13)

For (11), it will converge to a zero process. For (12), it is the process of
√
N(F̂ε(·)−Fε(·))

with a transformation such that ε = log y − x′θ0. Hence, it will converge to a mean zero

Gaussian process with covariance kernel generated by 1(ε ≤ log y − x′θ0) − Fε(log y −
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x′θ0) + fε(log y − x′θ0)E[X]′φ(Y,X, θ0). For (13), we have

√
N(Fε(log y − x′θ̂)− Fε(log y − x′θ0))

=− fε(log y − x′θ0))x′
√
N(θ̂ − θ0) +

√
Nf ′(log y − x′θ∗0)(θ̂ − θ0)′xx′(θ̂ − θ0)

=− 1√
N

N∑
i=1

fε(log y − x′θ0)x′φ(Yi, Xi, θ0) + op(1).

Given fε is continuous and bounded, we have
√
N(Fε(log y − x′θ̂) − Fε(log y − x′θ0))

converge to a mean zero Gaussian process with the covariance kernel generated by

−fε(log y − x′θ0)x′φ(Y,X, θ0). These complete the proof of Theorem 3. 2

Proof of Theorem 4: We divide the simulated process into two parts:

X1(y) =
N∑
i=1

Ui√
N

(
1(ε̂i ≤ log y1 − x′θ̂)− F̂ε(log y1 − x′θ̂)

)
X2(y) =

N∑
i=1

Ui√
N

(
f̂ε(log y1 − x′θ̂)(X − x)′φ1(Yi, Xi, θ̂)

)
.

By similar argument in Donald and Hsu (2011), X1(y) will converge to a mean zero

Gaussian process with covariance kernel generated by 1(ε ≤ log y1 − x′θ0) conditional

on sample path with probability 1. By similar argument for Theorem 2, X2(y) will

converge to a mean zero Gaussian process with covariance kernel generated by fε(log y1−

x′θ0)(E[X]−x)′φ(Y,X, θ0) conditional on sample path with probability 1. These complete

the proof of Theorem 4. 2

Proof of Lemma 2: First, for e ∈ [eL, eH ], the estimator for the fε(e) based on the true

εi is

f̄ε(e) =
1

Nh

N∑
i=1

K

(
εi − e
h

)
.

For some M > 0, we have

|f̃ε(e)− f̄ε(e)| =
∣∣∣∣∣ 1

Nh

N∑
i=1

K

(
ε̂i − e
h

)
−K

(
εi − e
h

)∣∣∣∣∣
≤ 1

Nh

N∑
i=1

∣∣∣∣K ( ε̂i − eh

)
−K

(
εi − e
h

)∣∣∣∣ ≤ M

Nh

N∑
i=1

|X ′i(θ̂ − θ0)|
h

≤ M√
Nh2

1

N

N∑
i=1

|
√
N(θ̂ − θ0)′Xi| ≤

M√
Nh2

Op(1) = op(1). (14)
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The second inequality holds since by assumptions, K(u) is Lipschitz continuous. The

fourth inequality holds since Xi is bounded and
√
N(θ̂ − θ0) = Op(1). The op(1) re-

sult holds since
√
Nh2 → 0. Note that the bound in (14) does not depend on e, so

supe∈[eL,eH ] |f̃ε(e)− f̄ε(e)| = op(1). Define SN = [eL + h, eH − h]. First, we claim that

sup
e∈SN
|f̄ε(e)− fε(e)| = Op

(
h2 +

√
logN

Nh

)
. (15)

Masry (1996) shows that (15) holds for any fixed compact set S that is a subset of the

interior point of [eL, eH ]. Here, we extend his result to the cases where the S can vary

with N . Note that for some ë ∈ [e− h, e+ h],

E[f̄ε(e)]− fε(e) = h2f ′′ε (ë)

∫
u

u2K(u)du = O(h2) (16)

Since f ′′ε is bounded, (16) holds uniformly for all e ∈ SN . Hence,

sup
e∈SN

∣∣E[f̄ε(e)]− fε(e)
∣∣ = O(h2). (17)

On the other hand, since SN is compact, it can be covered by a finite number (LN) of

closed intervals Ik,N with center ek,N and length `N such that LN = O(`−1N ).

sup
e∈SN

∣∣f̄ε(e)− E[f̄ε(e)]
∣∣

≤ max
1≤k≤LN

sup
e∈SN∩Ik,N

∣∣f̄ε(e)− f̄ε(ek,N)
∣∣+ max

1≤k≤LN

∣∣f̄ε(ek,N)− E[f̄ε(ek,N)
∣∣

+ max
1≤k≤LN

sup
e∈SN∩Ik,N

∣∣E[f̄ε(e)]− E[f̄ε(ek,N)]
∣∣ ≡ J1 + J2 + J3.

Note that for some M > 0 and for any e1 and e2,∣∣f̄ε(e2)− f̄ε(e2)∣∣ = sup
e∈SN∩Ik,N

∣∣∣ N∑
i=1

K
(εi − e1

h

)
−K

(εi − e2
h

)∣∣∣
≤ 1

Nh

N∑
i=1

M
∣∣∣e1 − e2

h

∣∣∣ ≤ 1

h2
M |e1 − e2|,

where the first inequality follows from that K(u) is Lipschitz continuous. Therefore,

J1 = max
1≤k≤LN

sup
e∈SN∩Ik,N

∣∣f̄ε(e)− f̄ε(ek,N)
∣∣

≤ 1

h2
M max

1≤k≤LN
sup

e∈SN∩Ik,N
|e− ek,N | ≤Mh−2`N . (18)
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Similarly, we have

J3 = max
1≤k≤LN

sup
e∈SN∩Ik,N

∣∣E[f̄ε(e)]− E[f̄ε(ek,N)]
∣∣ ≤Mh−2`N .

Now, we consider the J2 term. Define

WN(e) = f̄ε(e)− E[f̄ε(e) ≡
N∑
i=1

ZN,i(e),

ZN,i(e) =
1

Nh

(
K
(εi − e

h

)
− E

[
K
(εi − e

h

)])
.

For any η > 0. we have

P [J2 > η] = P
[

max
1≤k≤LN

|WN(ek,N)| > η
]

= P
[
|WN(ek,N)| > η, . . . , or |WN(eLN ,N)| > η

]
≤

LN∑
k=1

P
[
|Wn(ek,N)| > η

]
≤ LN sup

1≤k≤LN
P
[
|Wn(ek,N)| > η

]
.

Define λN =
√
Nh logN , then it is true that for N sufficiently large, λN |ZN,i(e)| ≤ 1/2

for all i = 1, . . . , N . Since exp(x) ≤ 1 + x+ x2 for |x| ≤ 1/2, we have exp(λNZN,i(e)) ≤

1 + λNZN,i(e) + λ2NZ
2
N,i(e). Consequently, when N is large enough

E
[

exp(λNZN,i(e))
]
≤ 1 + E

[
λNZN,i(e)

]
+ E

[
λ2NZ

2
N,i(e)

]
= 1 + E

[
λ2NZ

2
N,i(e)

]
≤ exp

(
E
[
λ2nZ

2
N,i(e)

])
, (19)

where the first equality holds since E[ZN,i(e)] = 0 and the second equality holds since

exp(x) ≥ 1 + x for all x. Also, for some M1 > 0

P
[
|WN(e)| > η

]
= P

[∣∣ N∑
i=1

ZN,i
∣∣ > η

]
= P

[ N∑
i=1

ZN,i(e) > η
]

+ P
[
−

N∑
i=1

ZN,i > η
]

≤
E
[

exp(λN
∑N

i=1 ZN,i(e))
]

exp(λNη)
+
E
[

exp(−λN
∑N

i=1 ZN,i(e))
]

exp(λNη)

≤ 2 exp(−λNη) exp
(
λ2N

N∑
i=1

E[Z2N,i(e)]
)

≤ 2 exp(−λNη) exp
(M1λ

2
N

Nh

)
(20)
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where the second line follows the Markov inequality where P (Z > c) ≤ E[exp(aZ)]/ exp(ac)

for a random variable Z and any positive numbers a and c. The third line follows from

(19) and the fact that ZN,i(e) and ZN,j(e) are independent for any i 6= j. The last line

holds since for some M1 > 0

E[Z2N,i(e)] = V
( 1

Nh
K
(εi − e

h

))
≤ 1

N2h2
E
[
K2
(εi − e

h

)]
=

1

N2h

∫
u

K2(u)f(e+ hu)du

≤ 1

N2h

(
fε(e)

∫
u

K2(u)du+ f ′′ε (ë)

∫
u

u2K2(u)du
)
≤ M1

N2h
, (21)

where the first inequality follows that V (Z) ≤ E[Z2] for any random variable and the

last inequality follows that fε and f ′′ε are uniformly bounded. Given that M1 does not

depend on e, we have

sup
e∈SN

P
[
|WN(e)| > η

]
≤ 2 exp(−λNη) exp

(Mλ2N
Nh

)
,

which implies that

P [J2 > η] = P
[

max
1≤k≤LN

|WN(ek,N)| > η
]
≤ 2LN exp(−λNη) exp

(Mλ2N
Nh

)
.

Let `N = N−2 and ηN = M2

√
N−1h−1 logN where M2−M1 = 4. Hence, for some M > 0,

we have LN ≤MN2 and

P [J2 > ηN ] ≤ 2LN exp
(
M2 logN −M1 logN

)
≤ 2MN2N−4 = MN−2.

Define AN ≡ {ω : J2 > ηN} and we have

lim
N→∞

N∑
i=1

P [J2 > ηN ] = lim
N→∞

N∑
i=1

P [AN ] ≤ lim
N→∞

N∑
i=1

2MN−2 <∞.

By Borel-Cantelli Lemma, it is true that P (AN infinitely often) = 0 or equivalently

P (AcN eventually) = 1. This implies that J2 = Oa.s.(ηN) and this is sufficient for J2 =

Op(
√

logN/Nh). Also, by the choice of `N , it is true that J1 ≤ M(Nh)−2 = o(ηN) and

similarly, J3 = o(ηN). These imply that

sup
e∈SN

∣∣f̄ε(e)− E[f̄ε(e)]
∣∣ = Op

(√ logN

Nh

)
(22)

11



(17) and (22) imply that

sup
e∈SN
|f̄ε(e)− fε(e)| = Op

(
h2 +

√
logN

Nh

)
.

which is sufficient for supe∈SN |f̄ε(e)− fε(e)| = op(1). In addition, for all e ∈ [eL, eL + h]

and for some M > 0,

|f̂ε(eL + h)− fε(e)| ≤ |f̂ε(eL + h)− fε(e+ h)|+ |fε(eL + h)− fε(e)|

≤ |f̂ε(eL + h)− fε(e+ h)|+Mh,

which implies that supe∈[eL,eL+h] |f̄ε(eL + h) − fε(e)| = op(1) and supe∈[eH−h,eH ] |f̄ε(eH −

h)−fε(e)| = op(1). Given the fact that supe∈[eL,eH ] |f̃ε(e)− f̄ε(e)| = op(1) and by applying

several triangular inequalities, we have supe∈[eL,eH ] |f̂ε(e)− fε(e)| = op(1). 2

Proof of Lemma 3: We have

F (y|X = x) = E[1(Y ≤ y)|X = x] = E[1(w(x′θ0, ε) ≤ y)]

= E[1(w(X ′θ0, ε) ≤ y)|X ′θ0 = x′θ0]

= E[1(Y ≤ y)|X ′θ0 = x′θ0] = F (y|X ′θ0 = x′θ0).

By the definition of the conditional CDF, the first equality follows. By rewriting Y as

w(x′θ0, ε) and by the independence between X and ε, the second equality holds. The

third equality holds by the definition of conditional expectation. The last line follows

from rewriting w(x′θ0, ε) as Y and from the definition of CDF. 2

Proof of Theorem 5: Define

r̄(y, v) =
1

Nh

N∑
i=1

K

(
v − Vi
h

)
1(Yi ≤ y), r̂(y, v) =

1

Nh

N∑
i=1

K

(
v − V̂i
h

)
1(Yi ≤ y).

Hence,

√
Nh(r̂(y, v̂)− r(y, v)) =

√
Nh(r̂(y, v̂)− r̄(y, v)) +

√
Nh(r̄(y, v)− r(y, v)).

Using similar argument in Hall and Yao (2005), we can show that supy |
√
Nh(r̂(y, v̂) −

r̄(y, v))| = op(1). This implies that the estimation error from θ̂ will disappear in the limit,

12



so using θ̂ is as good as using θ0. Second, we claim that
√
Nh(r̄(y, v) − r(y, v)) con-

verges to a mean zero Gaussian process Z(·) with covariance kernel Cov(Z(y1),Z(y2)) =

‖K‖22r(min{y1, y2}, v) where ‖K‖22 =
∫
u
K2(u)du. Define

fNi(y) =
1√
Nh

K

(
v − Vi
h

)
1(Yi ≤ y), FNi =

1√
Nh

K

(
v − Vi
h

)
,

ZN(y) =
N∑
i=1

fNi(y)− E[fNi(y)].

We first show that ZN(·) weakly converges to a Gaussian process Z(·) by checking that

(i)-(v) of Theorem 10.6 of Pollard (1990) hold.

For all ω ∈ Ω, define
−→
F N(ω) = (FN1(ω), ..., FNN(ω)),

−→
f N(y, ω) = ((fN1(ω), ..., fNN(y, ω)),

FNω = {−→f N(y, ω)| y ∈ [yl, yu]}, and AN = (a1, ..., aN) ∈ RN be a vector of non-negative

weights. Let� denote the pointwise product whereAN�
−→
F N(ω) ≡ (a1FN1(ω), ..., aNFNN(ω)).

The packing number D(ε, T0) for a subset of T0 of a metric space with metric d is de-

fined as the largest k for which there exist points t1, ..., tk in T0 with d(ti, tj) > ε for

i 6= j. We use the `1 norm on RN which is defined as |(u1, ..., uN)|1 =
∑N

i=1 |ui|. Since

D(ε|AN �
−→
F N |1, AN � FNωu) = D(ε|αAN �

−→
F N |1, αAN � FNωu) for all α > 0, without

loss of generality (WLOG) we can re-scale AN such that |AN �
−→
F N |1 = 1. Let

d(y1, y2) = |−→f N(y1, ω)−−→f N(y2, ω)|1 =
N∑
i=1

|fNi(y1, ω)− fNi(y2, ω)|.

Since fNi(y, ω) is either monotonically increasing or monotonically increasing in y de-

pending on the sign of K((v−Vi)/h) for i = 1, ..., N1, we have that for any y1 ≤ y2 ≤ y3,

d(y3, y1) =

N∑
i=1

|fNi(y3, ω)− fNi(y1, ω)|

=
N∑
i=1

fNi|(y3, ω)− fNi(y2, ω)|+ |fNi(y2, ω)− fNi(y1, ω)|

= d(y3, y2) + d(y2, y1).

We claim that D(ε, AN � FNω) ≤ 1/ε + 1. Suppose not, then there exists an integer

k ≥ 1/ε + 1 and yl ≤ y1 < y2 < ... < yk ≤ yu such that d(yi, yj) > ε for all i 6= j which

13



implies that

d(yl, yu) = d(yl, y1) + d(y1, y2) + · · ·+ d(yk, yu)

≥ d(y1, y2) + d(y2, y3) · · ·+ d(yk−1, yk) ≥ kε > (k − 1)ε ≥ ε/ε = 1.

But this contradicts to the fact that d(yl, yu) ≤ |AN �
−→
F N |1 = 1. Hence, we have

D(ε, AN �FN,ω) ≤ 1/ε+ 1 ≡ λ(ε) for all ω ∈ Ω for any AN and
∫ 1
0

√
λ(ε)dε <∞ and (i)

follows. To check (ii), we first assume that y1 ≤ y2 WLOG. Note that fNi(y1)fNi(y2) =

f 2Ni(y1) and

N∑
i=1

E [fNi(y1)fNı(y2)] =
N∑
i=1

E
[
f 2Ni(y1)

]
=N

(
E

[
1

Nh
K2

(
v − V
h

)
1(Y ≤ y1)

])
=

1

h

∫
V

∫
Y

[
K2

(
v − V
h

)
1(Y ≤ y1)

]
f(Y, V )dY dV

=
1

h

∫
V

K2

(
v − V
h

)(∫
Y

1(Y ≤ y1)f(Y |V )dY

)
g(V )dV

=
1

h

∫
V

K2

(
v − V
h

)(∫
Y

1(Y ≤ y1)f(Y |V )dY

)
g(V )dV

=
1

h

∫
V

K2

(
v − V
h

)
F (y1|V )g(V )dV =

1

h

∫
V

K2

(
v − V
h

)
r(y1, V )dV

=

∫
u

K2(u)r(y1, v − uh)du =

∫
u

K2(u) (r(y1, v)− rv(y1, v∗(u))uh) du

=‖K‖22r(y1, v)− h
∫
u

uK2(u)rvv(y1, v
∗(u))du,

where v∗(u) denotes some point between v and v− uh such that r(y, v− uh) = r(y, v)−

rv(y, v
∗(u))uh and rv denotes the first order partial derivative of r with respect to v.

Given rv(y, v) is uniformly bounded over y and v, we have
∑N

i=1E [fNi(y1)fNi(y2)] =

14



‖K‖22r(y1, v) +O(h). Similarly,

E[fNi(y)] =

√
1

Nh

∫
V

∫
Y

K

(
v − V
h

)
1(Y ≤ y)f(Y, V )dY dV

=

√
h

N

∫
u

K(u)r(y, v − uh)du

=

√
h

N

∫
u

K(u)
(
r(y, v)− rv(y, v)uh+ rvv(y, v

∗(u))(uh)2
)
du

=

√
h

N
r(y, v) +

√
h5

N

∫
u

u2K(u)rvv(y, v
∗(u))du,

where v∗(u) is some point between v and v − uh such that r(y, v − uh) = r(y, v) −

rv(y, v)uh+ rvv(y, v
∗(u))(uh)2. Given r(y, v) and rvv(y, v) are uniformly bounded over y

and v, we have

N∑
i=1

E[fNi(y1)]E[fNi(y2)] = NE[fN1(y1)]E[fN1(y2)] = O(h).

For all yl ≤ y1 ≤ y2 ≤ yu, when N tends to infinity,

E[ZN(y1)ZN(y2)] = E

[(
N∑
i=1

fNi(y1)− E[fNi(y1)]

)(
N∑
i=1

fNi(y2)− E[fNi(y2)]

)]

=
N∑
i=1

E
[
(fNi(y1)− E[fNi(y1)])(fNi(y2)− E[fNi(y2)])

]
= N

(
E
[
(fNi(y1)− E[fNi(y1)])(fNi(y2)− E[fNi(y2)])

])
= N

(
E

[
1

Nh
K2

(
v − V
h

)
1(Y ≤ y1)

]
− E[fN1(y1)]E[fN1(y2)]

)
= ‖K‖22r(y1, v) +O(h)→ ‖K‖22r(y1, v).

Therefore, (ii) holds. By similar argument, we have when N tends to infinity,

N∑
i=1

E[F 2Ni] =

N∑
i=1

E
[
f 2Ni(yu)

]
= ‖K‖22r(yu, v) +O(h)→ ‖K‖22r(yu, v),

which implies that lim sup
∑N

i=1E[F 2Ni] < ∞, and (iii) holds. Note that 1(FNi > ε) =

1
(
K ((v − Vi)/h) >

√
Nhε

)
. Given K(u) is bounded and

√
Nh → ∞, then for any

ε > 0, 1(FNi > ε) = 0 for all N large enough. This implies that for any ε > 0 and N

large enough
∑N

i=1E[F 2Ni1(FNi > ε)] = 0, and (iv) follows. To show (v), first we define
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for any yl ≤ y1 < y2 ≤ yu,

ρN(y2, y1) =

(
N∑
i=1

E
[
(fNi(y2)− fNi(y1))2

]) 1
2

,

ρ(y2, y1) =
(
‖K‖22 (r(y2, v)− r(y1, v))

) 1
2 .

Note that for yl ≤ y1 < y2 ≤ yu,

fNi(y2)− fNi(y1) =
1√
Nh

K

(
v − Vi
h

)
1(y1 < Yi ≤ y2).

By the same argument, we have that

|ρ2N(y2, y1)− ρ2(y2, y1)| =
N∑
i=1

E
(
(fNi(y2)− fNi(y1))2

)
− ‖K‖22 (r(y2, v)− r(y1, v))

=N

(
E

[
1

Nh
K2

(
v − V
h

)
1(y1 < Y ≤ y2)

])
− ‖K‖22 (r(y2, v)− r(y1, v))

=h

∫
u

uK2(u) (rv(y2, v
∗(u))− rv(y1, v∗(u))) du

≤h
∫
u

K2(u) (u(rv(y2, v
∗(u))− rv(y1, v∗(u))) du

≤h
∫
u

K2(u) |u| sup
y1,y2,v

|rv(y2, v)− rv(y1, v)| du = hM3

where M3 =
∫
u
|u|K2(u)du supy1,y2,v |rv(y2, v)− rv(y1, v)| which is a positive number not

depending on y1 and y2. This implies that ρ2N(y2, y1) converges to ρ2(y2, y1) uniformly

over y1 and y2. It follows that ρN(y2, y1) converges to ρ(y2, y1) uniformly over y1 and y2

and this is sufficient for (v).

By Theorem 10.6 of Pollard (1990), ZN(·) converges to a Gaussian process Z(·) with

Cov(Z(y1),Z(y2)) = ‖K‖22r(min{y1, y2}, v). We also have∣∣∣∣∣
N∑
i=1

E[fNi(y)]−
√
Nhr(y, v)

∣∣∣∣∣ =

∣∣∣∣√Nh5 ∫
u

u2K(u)rvv(y, v
∗(u))du

∣∣∣∣
≤ sup

v,y
|rvv(y, v)|

√
Nh5

∫
u

u2K(u)du = M4

√
Nh5,

where M4 = supv,y |rvv(y, v)|
∫
u
u2K(u)du. It follows that when N tends to infinity,

sup
y

∣∣∣∣∣
N∑
i=1

E[fNi(y)]−
√
Nhr(y, v)

∣∣∣∣∣ ≤M4

√
Nh5 → 0.
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We have

√
Nh(r̄(·, v)− r(·, v)) = ZN(·) +

N∑
i=1

E[fNi(y)]−
√
Nhr(·, v)⇒ Z(·),

since supy |
∑N

i=1E[fNi(y)] −
√
Nhr(y, v)| → 0. In addition, r̄(yu, v) = ḡ(v). For any

function b with b(yu) > 0, let Ψ(y; b(·)) = b(y)/b(yu) for yl ≤ y ≤ yu. The Ψ(y; b(·)) is

Hadamard-differentiable at b(·) = r(·, v) with

Ψ(·; r(·, v) + tNψN)−Ψ(·; r(·, v))

tN
→ 1

g(v)
ψ(·)− F (·|x)

g(v)
ψ(yu)

for all tN → 0 and for all ψN ∈ `∞[yl, yu] such that ψN → ψ ∈ `∞[yl, yu] in sup-norm. By

delta method, we have

√
Nh(F̂ (·|x)− F (·|x))∼

√
Nh(Ψ(·; r̄(·, v))−Ψ(·; r(·, v))

⇒ 1

g(v)
Z(·)− F (·|x)

g(v)
Z(yu) ≡ X (·).

Hence, for y1 ≤ y2

Cov(X (y1),X (y2))

=E

[(
1

g(v)
Z(y1)−

F (y1|x)

g(v)
Z(yu)

)(
1

g(v)
Z(y2)−

F (y2|x)

g(v)
Z(yu)

)]
=‖K‖22

(
r(y1, v)

g2(v)
− F (y1|x)r(y2, v)

g2(v)
− F (y2|x)r(y1, v)

g2(v)
+
F (y1|x)F (y2|x)g(v)

g2(v)

)
=
‖K‖22
g(v)

(F (y1|x)− F (y1|x)F (y2|x)).

Hence, these complete the proof of Theorem 5. 2

Proof of Theorem 6: First, we show that Zu(·) ⇒ Z(·) conditional on sample path

with probability approaching 1. LetW denote the sample path of {(Y1, X1), (Y2, X2), ...}.

Define

fuNi(y|W) =
Ui√
Nh

(
K

(
v̂ − V̂i
h

)
1(Yi ≤ y)

)
, F u

Ni|W =

∣∣∣∣∣ Ui√
Nh

K

(
v̂ − V̂i
h

)∣∣∣∣∣
We want to show that (i)-(v) of Theorem 10.6 of Pollard (1990) hold conditional on

sample path with probability approaching 1. Note that {fuNi(y|W)} are manageable
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since that fuNi are monotonic in y for all i, so (i) holds. For y1 ≤ y2

E[Zu(y1)Zu(y2)] =

N∑
i=1

1

Nh
K2

(
v̂ − V̂i
h

)
1(Yi ≤ y1).

As in Theorem 5, the estimation error from θ̂ would disappear in the limit. Hence,

E[Zu(y1)Zu(y2)] =
N∑
i=1

1

Nh
K2

(
v̂ − V̂i
h

)
1(Yi ≤ y1)

∼
N∑
i=1

1

Nh
K2

(
v − Vi
h

)
1(Yi ≤ y1)

p→ ‖K‖22r(y1, v).

We have
N∑
i=1

E[(F u
Ni|W)2] =

N∑
i=1

1

Nh
K2

(
v̂ − V̂i
h

)
p→ ‖K‖22r(yu, v),

and this implies (iii). Given Ui and K(u) are all bounded, for fixed ε > 0, F u
Ni|W ≤ ε for

all i and for N is large enough. Therefore, for N large enough,

N∑
i=1

E[(F u
Ni|W)21(F u

Ni|W > ε)] = 0

which implies (iv). Finally, for y1 ≤ y2, we have

ρ2N(y1, y2) =
N∑
i=1

E[(fuNi(y1|W)− fuNi(y2|W))2]

=
N∑
i=1

1

Nh
K2

(
v̂ − V̂i
h

)
1(y1 < Yi ≤ y2)

∼
N∑
i=1

1

Nh
K2

(
v − Vi
h

)
1(y1 < Yi ≤ y2)

p→ ‖K‖22 (r(y2, v)− r(y1, v)) ≡ ρ2(y1, y2)

uniformly in (y1, y2) which is sufficient for (v). To see this, by the same argument in

Theorem 5,
√
Nh

(
N∑
i=1

1

Nh
K2

(
v̂ − V̂i
h

)
1(Yi ≤ y)− ‖K‖22r(y, v)

)
will converge to a mean zero Gaussian process and this implies that

sup
y

∣∣∣∣∣
N∑
i=1

1

Nh
K2

(
v̂ − V̂i
h

)
1(Yi ≤ y1)− ‖K‖22r(y1, v)

∣∣∣∣∣ = op(1). (23)
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Second,

ρ2N(y1, y2) =
N∑
i=1

1

Nh
K2

(
v̂ − V̂i
h

)
1(< y1 < Yi ≤ y2)

=
N∑
i=1

1

Nh
K2

(
v̂ − V̂i
h

)
1(Yi ≤ y2)−

N∑
i=1

1

Nh
K2

(
v̂ − V̂i
h

)
1(Yi ≤ y1). (24)

(23) and (24) imply that ρ2N(y1, y2) will converge in probability to ρ2(y1, y2) uniformly

in (y1, y2). Therefore, we show that Zu(·) ⇒ Z(·) conditional on sample path with

probability approaching 1.

Also, we have

sup
y

∣∣∣∣∣ 1

ĝ(v̂)
Zu(y)− F̂ (·|x)

ĝ(v̂)
Z(yu)−

1

g(v)
Zu(y) +

F (·|x)

g(v)
Z(yu)

∣∣∣∣∣
≤
∣∣∣∣ 1

ĝ(v̂)
− 1

g(v)

∣∣∣∣ sup
y
|Zu(y)|+ sup

y

∣∣∣∣∣ F̂ (·|x)

ĝ(v̂)
− F (·|x)

g(v)

∣∣∣∣∣ |Z(yu)| = op(1).

The first term in the second line is op(1), since |1/ĝ(v̂) − 1/g(v)| = op(1) given ĝ(v̂)
p→

g(v) > 0 and supy |Zu(y)| is Op(1). Because supy

∣∣∣F̂ (y|x)/ĝ(v̂)− F (y|x)/g(v)
∣∣∣ = op(1)

by Theorem 5 and |Z(yu)| = Op(1), the second term is op(1). These imply that

X u(·) ∼ 1

g(v)
Zu(y)− F (·|x)

g(v)
Z(yu).

By applying Theorem 2.1 of Kosorok (2008), we have X u(·)⇒ X (·) conditional on sample

path with probability approaching 1. 2

Proof of Theorem 7: The proof is similar to the proof of Theorem 5 when θ0 is known.

We omit it. 2

Proof of Theorem 8: The proof is similar to the proof of Theorem 6 when θ0 is known.

We omit it. 2

Proof of Theorem 9: Theorem 9 follows when we apply the functional delta method

on the quantile functions. 2

Proof of Theorem 10: The proof is similar to the proof of Theorem 6. 2

Proof of Theorem11: The first part follows from the continuous mapping theorem and

the second part follows from the functional delta method. 2
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Proof of Theorem 12: The first part follows from the continuous mapping theorem.

The second part is similar to the proof of Theorem 10. 2
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