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1 Preliminary Results

In this appendix we state formally the statistical results for all the indices and justify the
approach to statistical inference using influence function based variance estimates. Before
stating the results we first derive some preliminary results concerning the various pieces
that are used in the indexes. In particular the S-Gini indices are all linear functionals of
either the GLC, G or the LC L. To derive the appropriate characterization of the limiting
distribution of the indexes we show that the linear functional is Hadamard differentiable
and derive appropriate weak convergence results for the GLC and LC after appropriate
normalization. Similarly the E-Gini indexes are nonlinear functionals of either p — f)(p)
or [ip — é(p) so we derive the relevant weak convergence result for these processes and
show that the functional is Hadamard differentiable. Our first result concerns the GLC
and LC processes and gives a uniform consistency result, a weak convergence result and
the pointwise influence function. We use B to refer to the Brownian Bridge process on

[0, 1] which is a mean zero Gaussian process with covariance kernel given by,

Cov(B(p)B(q)) = min{p, ¢} — pq (1)

Note that G and L are piecewise linear and continuous. Consequently we treat these
objects as elements of C[0,1], the set of all continuous functions on [0,1]. Define the

Gaussian stochastic process, G on [0, 1] to be such that for p € [0, 1],

B
9») =~ | 0w

where Q(t) = F~1(¢) is the quantile function at the point ¢ in the support of the distri-
bution F.

Lemma Al: Given the assumptions on the distribution in the text (referred to as As-

sumption 1 in this appendiz) we have that,
(i) for the GLC sup |G(p) — G(p)| 3 0 and in the space C|0, 1],
VNG -G)=G
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with pointwise influence function given by,
¢:(p; G) = (PQ(p) — G(p)) = 1(Y; < Q(P)(Q(p) — Y7)

(ii) for the LC we have that sup |L(p) — L(p)| © Oand in the space C|0, 1],

The results in Lemma A3 are not new and date back to at least Goldie (1977), who
presented a full weak convergence result for the LC process under very weak conditions.
Our proof of the results of Lemma A3 is somewhat simpler than that of Goldie (1977)
since we take as a starting point the results concerning the quantile process which are
stated below in Lemma in Lemma A2 which requires slightly stronger assumptions than
required by the method of Goldie (1977). Other results concerning the empirical LC
process include Gail and Gastwirth (1978) who derived an asymptotic distribution result
for a single ordinate of the normalized LC and Csorgd (1983) who proved that the em-
pirical LC process could be strongly approximated by a sequence of Gaussian processes
which are equal in distribution to that given above. Note also that by standard argu-
ments we have that 7 %3 p, that VN (fi — p) is asymptotically normally distributed with
variance given by F((Y; — u)?). Also, the influence function is given by ¢;(j1) = (Y; — p).
Indeed we get these results from Lemma A1(i) by noting that g = é(l) Using this and
the result in Lemma A1 we can straighforwardly derive results for p— L(p) and fi.p—G(p)
which are used in the E-Gini indices. The influence functions for these objects are easily
found as, —¢;(p; L) and pe;(p) — ¢s(p; G), respectively.

For the poverty indices we also need results for, G(pF(z)), pG(F(z)) — G(pF(2)),
F(z) and G(F(z)) (with the latter two objects playing the roles of 6; in the text). It
is well known that (see van der Vaart and Wellner (1996) for instance) that under our

conditions F'(z) is uniformly consistent and satisfies v/N(F — F) = B (in an appropriate
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function space) with a pointwise influence function given by ¢;(z; F) = 1(V; < z) — F(2)

so it remains to derive the influence function for, G(pF(z)) which also gives the result for

A A

G(F(z)) by setting p = 1. The following result shows that as a process defined over [0, 1],
VN(G(pF(2)) — G(pF(z))) converges to a Gaussian process with an influence function

given in the statement of the result.

Lemma A2: In C[0,1] we have that VN(G(pF(2)) — G(pF(2))) converges weakly to a

Gaussian process with pointwise influence function given by,
PQ(PF (2))di(2; F) + ¢i(pF(2): G)

This directly gives the influence function for G(F(z)) as a special case (p = 1) and
allows us to obtain the influence function for pG(F(z)) — G(pF(2)) as,

P(Q(F(2))¢i( F) + ¢i(F(2); G) — (pQPF (2)) (2 F) + ¢:(pF (2); Q)

The final set of preliminary results concerns the Hadamard differentiability of the maps
JH1 = p)=2H(p)dp and [f} (H(p))*dp]= that play the role of T in the text and allow
application of the functional delta method and allows calculation of the influence function

of the indices.

Lemma A3:

(i) The functional, [} (1—p)°~2H (p)dp is Hadamard differentiable with linear functional

derivative given by,

Ty = [ (0~ )" *hip)dp

(ii) The functional [} (H(p))* dp|= is Hadamard differentiable with linear functional

derivative given by,

Q=

-1

= [ @ @] [ EE) )



The first of these results follows immediately from the linearity of the functional
J3(1=p)*=2H(p)dp. The second result follows from applying the functional methodology
to the term [y (H(p))® dp, which is a linear functional of the Hadamard differentiable
map (H(p))*, and then applying the usual delta method to [} (H(p))* dp]=. We now

have the pieces that are required to form the influence functions for the various indices.
1.0.1 S-Gini indices

The following result provides a characterization of the limiting distribution of the S-gini

indices and also shows their consitency.

Proposition S1(A): Given Assumption 1, the following results holds for a fized value
of 0, such that 1 < § < oo,

(i) 1% 2 1% and

VR~ 15 = =56 1) [ (1= p) 2 L(p)dp ~ N(O, V(7})

(ii) 1% 2 1%, and
VR~ 15 = 60) 6~ 1) [ (1= )" G (p)dp ~ N(O, V()
(iii) WO 2 W9 and
VR =) =66 - 1) [ (1= )G (p)dp ~ N O, V().

~

We denote by V(.) the estimate of the variance of the index using the average of the

squared estimated influence function, so that for instance,
N 1M .
ww%:NZ@MmQ
i=1

Proposition S1(B): Given the conditions of Proposition 1(A),

~

V(IR) * V(I}),
V(I3) * V(I%)

~

V(W) & v(e)



1.0.2 E-Gini indices

Proposition E1(A) Given Assumption 1, and assuming that I%, 15 and W are all
strictly positive then the following results hold,
(i) 1% 2 1% and,
. 1
VN =13 = =200 [ (0= L) L)y
~ N0, V()
(i) 19 5 1% and,
7 1o [ -1
VNG =19 = 209" [ (w9 = G0)"7 (pG(1) = G(p)dp
~ N0, V(I5)),
(iii) W L W and,
. 1
VN = W) = 26(1) =271 [ (up — G0)" (G ) ~ pG(1)dp

~ N(0,V(W)).

Again the variances can be expressed in terms of the influence functions which are,

61D = —2UD [ G- GO (681 G) — p(Yi— )y
oi(W?) = 2(Y; — p) + ¢i(I3)

1 I
¢i(lp) = ;Qbi(]j) - f(Yz- — 1)

Then the variances can be estimated using,

G TEES SP
Ni:l '
Vi) = Ly g
A - Ni:1 \+ A
N 1 N .
V() = > adigy

s
Il
—

(=}



where the qg are ¢ with unknowns replaced by the relevant estimates. Appendix B

indicates how these influence functions can be estimated for a particular sample.
Proposition E1(B): Given Assumption 1,

V(Ig) * V(I7),

V(I3) 5 V(Ig)

V(e Ly (ive)

1.0.3 Poverty Indices

Proposition S2(A): Given Assumption 1, a fized poverty level z, and 1 < 6 < oo, then
P2 pioand
60 —1)

z

VNP’ — P = B(F(z)) —

/01“ — )" {Q(pF (2))pB(F(2)) + G(pF(2))} dp
~ N(0,V(P%)

Proposition S2(B): Given the conditions of Theorem 1 V(P°) 2 V(P?).
We have separate result for the case where § = 1.

Proposition S3(A): Given Assumption 1, a fized poverty level z, and 6 = 1, then

(i) P° 2 P and

VNP —P) = N (0, 212 (B[ = Y)210% < 2)] - B[z - ¥).1(%; < z))]2})
= N(0,V(P%))
(ii)
V(P) = gz Dole = VPV < 2) = (P 2 V()
Proposition S3(B): Given the conditions of Theorem 1 then for § = 1, V(P?) &

V(PY).



Finally for the Poverty index based on the E-gini index we have the following result.

Proposition E2(A): Given Assumption 1, a fized poverty level z,and 1 < a < oo, then
P2 pagnd
. 1
VN(P* = P%) = B(F(2)) = SG(F(2)) - 2B(F(2))
1 1.4 [t o
T [ 0GF() = GRF()™ T, F(2)dp)
~ N(0,V(P*)).

where,

and,

A

Proposition E2(B): Given the conditions of Theorem 1 V(P*) 2 V(P?).



2 Proofs

Note that we use a result concerning the quantile process.

Lemma A4: Given the Assumption 1, the following results hold,
(i) sup ]F(y) — F(y)| “2 0 and in the space D([y;,v.]) (the space of cadlag functions),
VN(F — F) = BoF

which is a Brownian Bridge with covariance between the process at x and z given
by the expression in (1) with p = F(x) and ¢ = F(z). The pointwise influence
function is given by,

¢i(7;Q) = 1(Y; < x) — F(x)

(ii) sup |Q(p) — Q(p)| =3 0 and in 1°°(0, 1) (the space of uniformly bounded real functions

on (0,1)) we have,

A B
VN@Q-Q) = Q)
where the the pointwise influence function is given by,
6ip; Q) = 107 < QU)o+ 1Y > Q) 5
- Z f(Q(p)) ' f(Q(p))

The result in (i) are well known results for the empirical distribution function, see van
der Vaart and Wellner (1996). The results in (ii) combine the strong uniform convergence
result contained in Corollary 1.4.1 of Csorgo (1983), a weak convergence result such as
shown in Van der Vaart and Wellner (1996, page 387) and the influence function is derived
in Huber (1981, p. 56). See Csorgo (1983) for more details on quantile processes.
Proof of Lemma A1: (i) Note that ,



Consequently we have that,

sup Gp) — Glp)| = swp| [(Q() — Qo))

P
< sup [ sup Q) — Qs
r JO tg[0,p]

< sup ]Q sup/ dt

= sup [Q(t) - Q(1)]

te(0,1]

= 0p(1)

using the result in Lemma A4(i). For the next result note that G = T(Q) is a linear
functional of () such that,

TQ) = [ Q)

and is therefore Hadamard differentiable at @) tangentially to C|0, 1] with Hadamard

derivative T" with
e P~
T(Q)w) = [ Gyt
0
for Q € C[0,1]. Consequently,
VNG -G)=¢

in (>°(0, 1) where,

o f(QU

To get the influence function we have (using a change of variable from ¢ to y) that,
66 = [ it Qut
P t—1 t
I (107 < @0 gy + 107> 00 gy )
p Yp
= [T < - Foydy+ [T100 > 9Py

Ui

Yp

= <) ([0 F@a- [ ) 105 ) [ o
= (pyp = G(p)) = LYs < 9p)(yp = Y2)

10



after using integration by parts to show that,

/y Fly)dy = yF(y)¥ - / yf (y)dy
Yo' (yp) — G(p)

Then take the definition of G(p) and the facts that F(y,) = p and y, = Q(p) and the
result follows.(ii) For the LC we have that since L(p) = G(p)//i then,

L(p)

Sgp!i(p)—L(p)! < sup!é(p)—G(p)HTIu—ﬂ!

VN(L=L) = VNG =€)~ VN (=)
g L
= ﬁ—ﬁgu)

using the Slutsky Theorem (ST) the Continuous Mapping Theorem (CMT) and the fact
that,

VN(ii = 1) = G(1)

since /i = G(1). To get the influence function we use the fact that,

. G
i) = +(p)
G(1)
so that by the product rule for differentiation,
1 G(p)
i L) = F=0ipG) — il
¢i(p; L) G(1>¢ (»; G) G(1)2¢( G)

= ;@(p; G) — L/(Lp)(Y; — 1)

using the fact that G(1) = p.Q.E.D.

Proof of Lemma A2: To do this we first write,

~—

VN(G(pF(2)) — G(pF(2))) = VN(G(pF(2)) — G(pF(2)))
+VN(G(pF(2)) — G(pF (2)

~—
~—



For the last term we have,

sup [ VN ((G(pF (2)) — G(p(F(2))) — (GF(2)) — G(pF(2)))))|

p

= sup\/N

p pF(z)
sup Qp) — Qp))| VN sup [pF(2) — pF(2)]

sup |Q(p) — Q)| VN|F(2) — F(2)]

p

= 0p(1)

IN

IN

by Corollary 1.4.1 of Csorgo (1983) which implies that sup, ‘Q(p) - Q(p))‘ 20 and
the usual Central Limit Theorem applied to v/N|F(z) — F(z)|. By a simple change of
variable we have that the first term converges weakly to Gaussian process by Lemma
A1, and that the influence function will take the form ¢;(pF(z); G). For the second term
we note thatyv/N(pF(z) — pF(z)) converges to a Gaussian process and has pointwise
influence function given by p¢;(z; F') while, on the interval (0,1) the function G(t) has a
derivative Q)(¢) which is continuous on [0, 1] and hence bounded and uniformly continuous
on (0,1) then since for p € (0,1), 0 < pF(z) < 1 so that by Lemma 3.9.25 of Van der
Vaart and Wellner (1996) implies that the map G(t) is Hadamard differentiable so that
VN(G(pF(z)) — G(pF(z))) converges weakly to a Gaussian process that had pointwise
influence function given by, Q(pF(2))pd;(z; F). Therefore the incluence function for

VN(G(pF(2)) — G(pF(2))), is given by,
¢i(pF(2); G) + Q(pF(2))pdi(2; F).

Q.E.D.

Proof of Lemma A3: Since T(H) = [y (1 — p)° 2H(p)dp is a linear functional
of H(p) it is trivially Hadarmard differentiable and for h,(p) — h(p), t, — 0 with
H(p) + t,hn(p), h(p) and H(p) in the class of continuous functions,

T(H + tohy) — T(H)
tn

= [0 )
~ [ prh)ap
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so the result in (i) follows.

For [f) (H(p))* dp]'/* it suffices to show that the (H(p))* defined as a mapping from

(0,1) — R for some finite A, is Hadamard differentiable. Note that H(p) € [0, A] for
some finite A. Note that the function,

g1(z) = 2 for z € [0, A] for some finite A

is differentiable at = € [0, A] with derivative given by az®~! which is uniformly continuous
on [0, A] and hence uniformly continuous and bounded on (0, A). Since for p € (0,1) we
have that, 0 < H(p) < A then by Lemma 3.9.25 of Van der Vaart and Wellner (1996)

the mapping (H(p))” is Hadamard differentiable with linear functional derivative

a(H(p)* " h(p)

for 1 in the class of continuous functions on [0,1]. Then [y (H(p))®dp, being a linear
functional of a Hadamard differentiable function, is trivially Hadamard differentiable

with linear functional derivative,

[ ) nip)is

Since the latter is simply a real valued object (rather than a function) and since the

function,
ga(x) = ()"
is differentaible with derivative,

gh(a) = (1/a)(x) /o)1

we have that [f) (H(p))* dp]« is Hadamard differentiable with linear functional derivative,

([ ) a2 [ ) o)y

0

Q.E.D.
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Lemma A5: For an influence curve ¢;with estimate ggiwith
|QA§'L —¢il < A Ay + Ao Ay + Az Az + Ay Ay,

then sufficient conditions for,

are that the following hold,
(i) Ay 20 and |Ay| is stochastically bounded;;

(i) Ay 20 and‘% SN A2 is stochastically bounded;

(iii) + S0, A2 20 and |As] is stochastically bounded;
(iv) £ 5N A% 50 and & SN, AY; is stochastically bounded;
(v)L N, ¢? is stochastically bounded.

Proof: This follows from the fact that,

1 N - 1 N ) 1 N ) 9 N A
N = gL 0t (b - )
1 X .

1N21/21NA 21/2
2<N;¢i> (NZ(@—@))

i=1
and the conditions given with repeated use of the Cauchy Schwarz inequality. Q.E.D.
Proof of Proposition S1(A): Each of these results follow from Lemma Al and Lemma

A3. In particular for (i),

|[A%—I};\ < 5sup\L \/ d—1)( 5 2dp

= 5sup\L() L(p)| = 0,(1)
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using Lemma A1(ii). Also,

VR~ 15 = =56 1) [ (1= p) 2 L(p)dp ~ N(O, V()

by Lemma A3 and the result in Lemma A3(ii). Exactly analogous arguments yield the

results in (ii) and (iii) using the result contained in Lemma Al. Q.E.D.

Proof of Proposition S1(B): We verify the conditions of Lemma A5. Consider first

and write,

where,

T
15
T

1y

8.7 = 66 1) [ (1= )" it G

For the first term we have,

T < sup|Q) - QWISE - 1) [ (1= )" Zpdp
= sw |Q(r) - Q)|

= o0p(1)

using Lemma A4(ii). Similarly using Lemma A1(i),

Tl < suplGr) = GEISE-1) [ (1= ) pdp

= op(1)

15



Next,

= sG] a-pewa - [ a-neu
< S| [} =00 [ 0= 0w
A el R ARl
< gNQ@%%me@—n[ﬂl—m*wp
Hoe - [0 0w
< sup [Q(p) = Q)10 +sup [Q(p) [sup (1 = F())"™ = (1= F(y)"|

= op(1)

where the last line follows from Assumption 1, and the results in Lemma A4 using the

fact that the function g(x) = 2°~1 is uniformly continuous on [0, 1] for § > 1. Finally,

Tl < Y- 1| [ (-5 00 < Q) — 100 < Q)
. F(Y;) B 5o
< Y /Fm (6 —1)(1—p) dp‘

< Yisw|(l— F@)" — (1= F@)™

This term the satisfies (ii) of Lemma A5 so that because all the other terms satisfy (i)
of Lemma A5 we have the result in (iii). The results in (i) and (ii) follow similarly. For
(i),
[Gi(1%) = S| < |t = p| + [(W?) = ds(W?)]
so that the result in (i) follows from (iii) and Lemma A5 using the fact that i —p = o0,(1).
For (i),
IM@%wMQIS;MMA I oI [3 - 3

A

g _75 %
I

so that the result follows from (ii) and Lemma A5 using i — u = 0,(1) the result of
Proposition S1(A)(i) and Assumption 1 which implies that E(]Y; — p|?) < co. Q.E.D.

!u pl + Y — u!
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Proof of Proposition E1(A): Consistency of all three indices follows simply from the
CMT. More specifically consider first the estimator,

~

i =21[ (- L) dp)®

and consider the component (p — L(p))®. Note that p — L(p) € [0,1]. Now consider the
function g(z) = 2* for z € [0, 1] with o > 1 fixed. It is easy to show that for z;, z; € [0, 1],

|9(21) — 9(22)| < afz1 — 22| so that,

A

(0 = L(p))* = (0 = L(p)*| < a|L(p) = L(p)|

so that,

IN

AW@_amw—@—umm@
< asup|L(p) — L(p)]

0p(1)

/Ol(p — L(p))™dp — /Ol(p - L(p))adp'

using Lemma A1(ii) so that

/Ol(p — L(p))*dp > /Ol(p — L(p))*dp

Then it follows by the CMT that

~

1 . . 1 L
Iy =2 (p—Lip)dpls L2 (p— Lip)dp]* = I
For the other indices we use the CMT and ST and the facts that,

I3 = ply 2l = I

A

We = 20 —I5 52— 1§ =w*

In order to derive the limiting distribution results we use the result of Lemma A1(ii)

which implies that,
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Therefore using Lemma A3,
V(- 13) = 24097 [ 1) L)
A = /Ol(p — L(p))*dp
The result in (i) follows upon noting that
2A/@)=1 — gagl-a( gl/ayl=a _ ga(g gl/a)l-a _ ga(ayl-a
For (ii) we note that

VNG -13) = VNI —I3) + I[3VN( - p)
= —p2AW/ /Ol(p — L(p))* " L(p)dp + I3G(1)

219" [ (e~ Glp)) ™ (0G(1) ~ G(p))ip

using the definition of £ after some manipulations. The result for
We =24 — I

follows similarly. Q.E.D.

Proof of Proposition E1(B): Write,

7

[6i(13) = aiI5)] < 2°(15) 7 X IT)]

7=1
+2°((ID)' = (I ) ef

18



where,

T, = /01 ((ip = G(p))*'pQp) — (up — G(p)*'pQ(p)) dp

7= [ (- GO ~ (- G Cw)) dp

7 = [ (- GO ~ (- G)QE) 1Y < Q))dp
7 = [ (- GO QWA < Q) ~ 1% < Q) dp

o7 = /Ul(up — G(p)* N (¢ilp; G) — p(Y; — ) dp

Because of the fact that 2%(1)'~* is stochastically bounded we must show that |T}| =

0,(1) so that the conditions of Lemma A5 are satisfied. To deal with 7} use the inequality,
b — ab| = |a — a||b — b + |al[b — b| + |bl|a — al
and the following facts,

sup Q)] < o0
sup | (up - Gp)* ! < p<oo
sup P(Q(p) — Q)] < sup|(Q(p) — Q)| = 0,(1)

p

which follow from Assumption 1 and Lemma A4(ii) and the fact that,

~

sup |(iip — G(p)*™" = (up — G(p)*™'] = 0,(1)

a—1

This last result follows from Lemma A1(i) and the fact that the function g(z) = 2! is

such that for 1 < o < 2 and 2/, 2" € [0, 1],
ola") — 9(a")| < o/ — /"

while for o > 2,
l9(z") = g(a") < (= D)[a" — 2"

19



Then combining these results we have that,

/0 1 sup |(fip G(p)*'pQ(p) — (up — G(p))*'pQ(p)| dp
< sup (i = G(p)*'pQp) — (= G(r))"'pQ(p)|

= op(1)

||

IN

The same arguments apply to the term 75 and 7%, using the results in Lemma Al. For

T3 and Ty the same arguments apply once we note that,

sup 1(Y; < Q(p)) < 1.

Next |T5| = Yio,(1) follows using the fact that,

sgp [(up — G(p)* ' Q(p)| < o0

and,

[ (0 < Q) 10 < QD) dpl = 1F(Y:) ~ F(Y)

< sup E(y) = F(y)l

= op(1)
which follows from Lemma A4(i). Finally by Proposition E1(A)(ii) we have that, (I5)'~*—
(I$)"=* = 0,(1) and since

97| < C1 + oY)

we have that condition (ii) of Lemma A5 is satisfied by the term 2%((1§)}~* — (I5)'~)¢2.
The results for the other indices follow in a manner that is similar to the proof of (i) and
(ii) of Proposition E1(B). Q.E.D.

Proof of Proposition S2(A): Given,

A

B = F(2) = 206~ 1) [ (1= p) 2GR ()dp
and the fact that by Lemma A4(i),
VR(E() - F(2)) = B(F(:))

20



and the fact that by Lemma A2 and Lemma A3(i),

\/Nfol(l—p)‘s2(@(pﬁ(2))—G(pF(Z)))dp = /01(1—1?)“ {Q(pF(2))pB(F(2)) + G(pF(2))} dp.

The result then follows similarly to the proof of Proposition S1(A).Q.E.D.

Proof of Proposition S2(B): Note that,

[6i(P°) = 4i(P7)] <

2T

where,

Tio= [0 <206 - 1) [ (1= 9 Q0EE) - QF )y

T, = [66-1) [ 0= 5 2FEQWEE) - FEIQWE )

T, = [66-1) [ (05 HGEE) - GOF ()

T =[5 - 1) [ 00— 91 < QEE))QWEE) - QWF()d
T = [66-1) [ (1= 5 QUFE)AN: < QUFE) - 104 < QF(E)ds
Ty = Y- 1) [ =) (107 < QUF() ~ 1% < QUF() dp

For the first term note that,
Q(pF(2)) — Q(pF(2)) = (Q(pF(2)) = QpF(2))) — (Q(PF(2)) — Q(PF(2)))
so that,
sup [Q(PF (2)) = QPF(2))] < sup|Q(p) = Q(p)| + 5w |Q(PF (2)) — QPF (2))]
By Lemma A4(ii) we have that,

sup 1Q(p) — Qp)| = 0,(1)

Since @ is uniformly continuous on [0, 1] then for any € > 0 there is a 6 > 0 such that if

p,p" €[0,1] with |[p’ — p”| < ¢ then |Q(p') — Q(p")| < e. By Lemma A4(i) we have that

21



F(z) 2 F(z) so that with probability approaching 1, |[pF(z) — pF(z)| < § which implies
that with probability approaching 1,

sup |Q(PF(2)) = QPF(2))] < ¢
and since € is arbitrary we have that,

sup [Q(PF(2)) = QPF(2))] - 0.
Given these facts,

T < A%< 2)sup Q) ~ QGFENISE 1) [ (-5 pp
= 1(Yi < 2)sup Q(F(2)) — Q(pF(2))]

which satisfies (ii) of Lemma A5. Similar arguments can be used for the terms 75 and
Ts. Next, Ty < Ty since 1(Y; < Q(pF(2))) is less than 1(Y; < z) so that T satisfies (ii) of
Lemma Ab. For T we have that since Q(pF(z)) < z for p <1 then

F(Yi)/F(z) 5o
o< z6-1) [ (1—p) Ry

F(Y;)/F(2)

5 )

20

using the fact that z and § are fixed and arguments similar to those used in the proof of
Proposition S1(B). Therefore the term 75 satisfies (ii) of Lemma A5. The same argument
applies to the final term Ts. Q.E.D.

Proof of Proposition S3(A) and S3(B): Because (recalling that § = 1),

1
E(=(z=Y)1(Y;<2))=P°
zZ
and,
1
0 < —-(z=-Y)1(Y;<2)
ya
1
< Z(z—qy) <1
< z(z ) <
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then we have by the Strong Law of Large Numbers that, P? %% P9 so that P £ P9

Also by the Lindeberg-Levy Central Limit Theorem we have that,
VNP’ = P?) % N (0, V(P?))

where,

Finally the LLN implies that,

leg ZZ(Z —Y)P1(Yi<2) S E <(z —Y)21(Y; < z))

=1

so that we have,

A A

V(P°) 5 V(P

Q.E.D.
Proof of Proposition E2(A): The result follows similarly to Proposition S3(A) from
Lemma A1, A3 and A4 plus Lemma A2 which gives,

A

VN ((pG(F(2) = G(pF(2))) = (pG(F(2)) = G(pF(2)))) = T(p, F(2))

Q.E.D.

Proof of Proposition E2(B): This result follows in a similar fashion to the proof of
Proposition E1(B) with adjustments similar to those used for the S-gini poverty index in

Proposition S2(B).Q.E.D.
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3 Computation of Influence Curves

In this section we consider the issue of computing the influence curves for the inequality,
welfare and poverty indices. Throughout the appendix we use some of the facts discussed

in Section 3 of the text regarding the computation of the indices.. Recall that we are

using the shorthand p; = F (y;) and that 71; = p; — pj_1. Let pp = 0. Then interval

N

(pj—1,pj], Q(p) = y;. Also on the same interval,

j—1

A

Gp) = (p— Pj—1)y; + > Ty = y;p + a;
=1

where by convention a; = 0 so that on the interval (0, p1] we have that G’(p) = py;. As

in the calculations performed in Section 4.3 we use the fact that,

/1 i/ﬁj
0 j:1 ﬁjfl

along with the definitions given above to calculate the estimates of the influence curves

for the indices.

3.1 Influence Curves for S-Gini indices

The key component of the influence curve for the S-gini related indices is the term,

1 . 4.
86 = 1) [ (1= p)"2i(m; G)p = > I
0 =1
Then we are required to compute the following;
s ! 5—2, A
IF o= 86— [ (1=p) " QMr)dp
1 A
5= =66-1) [ 4= G0y
1 . .
I = =06-1) [ 1=p) QLY < Qp))dp

Bo= 661 [ -0 < Q)i

each of which is considered in turn:
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N
Iy = =37 (d; + djy)
j=1
where,
B =5 (1 -9 Ch)) — (150" Glpy)
& =—((1-p) = (1= p1)")
with

N

J

G(p;) =Y My = pjy; + aj = Pjyj+1 + aj41
=1

(i)

~ N A

I = =3 1(Y; < y;)y;d;

7j=1

~

dy =5 (1=p)" " = (1= p; )"

(iv)
A N A
Iy =Y > 1(Y; < y;)d;
j=1
Then we can compute the S-gini influence curves using:

A 4 ~
oW = S IP
=1
Gi(1Y) = (Yi— 1) — d:i(W?)

1. 1 R
oi(1}) = —ﬁ@-(Wﬁ) — ﬁm — ) (1= 13)
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3.2 Influence curves for E-Gini indices

For the E-gini indices the key component has the form,

;/01 a(up = Gp)* " (p(Yi = ) = du(p: @) dp = = " IF
=1
where
= [ alip - GO oY - s
= [ alip - GE) Q)
B = [ aip- GO Gy
= [ alir— GO) Q) - YOI < Q)ip
Q) _
IF = (i= ) {6 = )1 # v) + 10 = )}
where,

R P o
J
. 1 ~ a+1 ~ a+1
& =y (O =0 = iy =)
J
N2 A2
A3 a—1 b; P
€ = a(—aj) (5‘7 - ]2 )

with, b; = i —y; and a; = Z{;l (e — ;)

N
7 ==y {(e) — @ # ) + E1( = yy)}
j=1

(iii)
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+Za]{e (it # y5) + E1(7 = yy)}
j=1
where,
~4 1 ~ «@ A~ «
& = g((bjpj—aj) — (bjpj—1—a;)")
J
& = al-a)" " (b — i)

(iv)

N
1P = Y 1Y <)y — YO {610 # v) + &1 = yy)

These four terms can be combined and simplified as follows:
Z Il _ Z lhl Z 2h2
where,

o= (e -lpty)+eELi=y)
g = U # )+l =y)

hy = (Yi—f)

no= (1Y <y)y — Vi) +ay)

Then using these results we have the influence curves for the E-gini indices as:

By = (i S AT
=1
G(We) = 2(1@—;1)—@0,%)

bi(13) = ;mm—fw— )
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3.3 Influence Curves for Poverty Indices

As was the case with the calculation of the indices themselves we use a change of variables

and the fact that,

For the S-gini related index we must compute,

5P = i) = "0 [ (bR )6 F) + b () 0) do
= ¢i(ziF) - qai(z;m5(5 - 1) /01(1 — )’ pQ(pF(2))dp
SO g iy oy
= bi(z F) - ds"(zz; F)if - iéiﬁ

where,

Bo= 61 [ (- p QR ()

= 06— [ (1=p) Vil < QF(=)dp

We consider each term in turn and use a change of variables:

(i)
~ 5(6 —1) [F&) . P
IS — _ F o 0—2 d
P = T F@ 0w
_ Al N(z)y~l
F(Z)(S J=1 T
where,



(ii) Similarly,

I =
= F(z
(iii) Next
- -
where,
o
with
(iv)
Iy
where,
74
dj
(v)

1 N(z) A
F(z)°~1 jz—:l < w
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For the E-gini based poverty index the influence curve is given by

BPY) = 1Y <2)~ “d(F(2):0)
FL TR [ GGER) ~ GEFE)6F () T)dp
= —lYi<2)+ 17+ Zla[fg]é—l 7 IF

where Tg was already calculated in Section 6.2,

= =2 ((FG)2 = ayeun) + 10 < 2)(z = )

= 2 [ oG — GE ) pp

=~ [ awG(F() - GFE))pQF(2))dp

o= (FEG—a() 100 < )W) [ a(pGFE) ~ GoR(E) vy
= [ apGEE) ~ GEEE) pFEQWF )i

iE = [ aWwO(FE) - GoFE))CEEE)ip

= [ awO(E:) - GEFE)) MY < QFE)QWE) — Y)dp

(i) The term IF has already been given.
(i)

IF = =S {(E - @z) # ) + ELG) = )}

'1j

—~
I

~

where,

52 52
3 _ a1l Pi
& = al-a)(F -2

with, Ej = (z) —y; and a; = Z{;l Ty — yj)
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(iii)

where,

(vii)

By NE)

; <(Z>)2 > vy {(& — EDUAG) # 1) +EUAE) = )}
PN 3
E(z) ; v {(&) = E)L(=) # yy) + ELA) = yy) |
N(z)

_Fzz) < a; {é;ll(/i(z) # ;) + E1(f(z) = yj)}

~4 1 /.- N o )

v E ((b]pj a a]) N (bjpj—l - “J) )

& = a(—a)" (B — Dj-1)

N(z)

IF =3 1(Yi < y)(y; — Y {&1((z) # v;) + E1(02) = yy)

Jj=1

These terms can be combined as follows,

7 N(z) N
S IE =3 g+ Y 2
1=2 j
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where,

B = @A) # y) + ELE) = yy)

Bo= #E) # ) + E1E) = )

Po— F;z)z (2 =y + F(2)(z — (=) — 1(Y; < 2)(= - Y7))
h o= ;82 (1(Y; <y;)(y; = Yi) +a;)
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