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1 Preliminary Results

In this appendix we state formally the statistical results for all the indices and justify the

approach to statistical inference using in
uence function based variance estimates. Before

stating the results we �rst derive some preliminary results concerning the various pieces

that are used in the indexes. In particular the S-Gini indices are all linear functionals of

either the GLC, Ĝ or the LC L̂. To derive the appropriate characterization of the limiting

distribution of the indexes we show that the linear functional is Hadamard di�erentiable

and derive appropriate weak convergence results for the GLC and LC after appropriate

normalization. Similarly the E-Gini indexes are nonlinear functionals of either p� L̂(p)

or �̂p � Ĝ(p) so we derive the relevant weak convergence result for these processes and

show that the functional is Hadamard di�erentiable. Our �rst result concerns the GLC

and LC processes and gives a uniform consistency result, a weak convergence result and

the pointwise in
uence function. We use B to refer to the Brownian Bridge process on

[0; 1] which is a mean zero Gaussian process with covariance kernel given by,

Cov(B(p)B(q)) = minfp; qg � pq (1)

Note that Ĝ and L̂ are piecewise linear and continuous. Consequently we treat these

objects as elements of C[0; 1]; the set of all continuous functions on [0; 1]. De�ne the

Gaussian stochastic process, G on [0; 1] to be such that for p 2 [0; 1];

G(p) = �
Z p

0

B(t)
f(Q(t))

dt

where Q(t) = F�1(t) is the quantile function at the point t in the support of the distri-

bution F .

Lemma A1: Given the assumptions on the distribution in the text (referred to as As-

sumption 1 in this appendix) we have that,

(i) for the GLC sup jĜ(p)�G(p)j a:s:! 0 and in the space C[0; 1],

p
N(Ĝ�G)) G
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with pointwise in
uence function given by,

�i(p; Ĝ) = (pQ(p)�G(p))� 1(Yi < Q(p))(Q(p)� Yi)

(ii) for the LC we have that sup jL̂(p)� L(p)j a:s:! 0and in the space C[0; 1],

p
N(L̂� L)) G

�
� L
�
G(1) � L:

with pointwise in
uence function given by,

�i(p; L̂) =
1

�
�i(p; Ĝ)�

L(p)

�
(Yi � �)

The results in Lemma A3 are not new and date back to at least Goldie (1977), who

presented a full weak convergence result for the LC process under very weak conditions.

Our proof of the results of Lemma A3 is somewhat simpler than that of Goldie (1977)

since we take as a starting point the results concerning the quantile process which are

stated below in Lemma in Lemma A2 which requires slightly stronger assumptions than

required by the method of Goldie (1977). Other results concerning the empirical LC

process include Gail and Gastwirth (1978) who derived an asymptotic distribution result

for a single ordinate of the normalized LC and Cs�org�o (1983) who proved that the em-

pirical LC process could be strongly approximated by a sequence of Gaussian processes

which are equal in distribution to that given above. Note also that by standard argu-

ments we have that �̂
a:s:! �, that

p
N(�̂��) is asymptotically normally distributed with

variance given by E((Yi� �)2). Also, the in
uence function is given by �i(�̂) = (Yi� �).

Indeed we get these results from Lemma A1(i) by noting that �̂ = Ĝ(1): Using this and

the result in Lemma A1 we can straighforwardly derive results for p�L̂(p) and �̂:p�Ĝ(p)

which are used in the E-Gini indices. The in
uence functions for these objects are easily

found as, ��i(p; L̂) and p�i(�)� �i(p;G), respectively.

For the poverty indices we also need results for, Ĝ(pF̂ (z)); pĜ(F̂ (z)) � Ĝ(pF̂ (z)),

F̂ (z) and Ĝ(F̂ (z)) (with the latter two objects playing the roles of �̂j in the text). It

is well known that (see van der Vaart and Wellner (1996) for instance) that under our

conditions F̂ (z) is uniformly consistent and satis�es
p
N(F̂ �F )) B (in an appropriate
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function space) with a pointwise in
uence function given by �i(z; F̂ ) = 1(Yi � z)�F (z)

so it remains to derive the in
uence function for, Ĝ(pF̂ (z)) which also gives the result for

Ĝ(F̂ (z)) by setting p = 1. The following result shows that as a process de�ned over [0; 1];
p
N(Ĝ(pF̂ (z)) � G(pF (z))) converges to a Gaussian process with an in
uence function

given in the statement of the result.

Lemma A2: In C[0; 1] we have that
p
N(Ĝ(pF̂ (z))� G(pF (z))) converges weakly to a

Gaussian process with pointwise in
uence function given by,

pQ(pF (z))�i(z; F̂ ) + �i(pF (z); Ĝ)

This directly gives the in
uence function for Ĝ(F̂ (z)) as a special case (p = 1) and

allows us to obtain the in
uence function for pĜ(F̂ (z))� Ĝ(pF̂ (z)) as,

p(Q(F (z))�i(z; F̂ ) + �i(F (z); Ĝ)�
�
pQ(pF (z))�i(z; F̂ ) + �i(pF (z); Ĝ)

�
The �nal set of preliminary results concerns the Hadamard di�erentiability of the mapsR 1
0 (1 � p)��2H(p)dp and [

R 1
0 (H(p))

� dp]
1
� that play the role of T in the text and allow

application of the functional delta method and allows calculation of the in
uence function

of the indices.

Lemma A3:

(i) The functional,
R 1
0 (1�p)��2H(p)dp is Hadamard di�erentiable with linear functional

derivative given by,

T 0H(h) =
Z 1

0
(1� p)��2h(p)dp

(ii) The functional [
R 1
0 (H(p))

� dp]
1
� is Hadamard di�erentiable with linear functional

derivative given by,

T 0H(h) =
�Z 1

0
(H(p))� dp

� 1
�
�1 Z 1

0
(H(p))��1 h(p)dp
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The �rst of these results follows immediately from the linearity of the functionalR 1
0 (1�p)��2H(p)dp. The second result follows from applying the functional methodology

to the term
R 1
0 (H(p))

� dp, which is a linear functional of the Hadamard di�erentiable

map (H(p))� ; and then applying the usual delta method to [
R 1
0 (H(p))

� dp]
1
� . We now

have the pieces that are required to form the in
uence functions for the various indices.

1.0.1 S-Gini indices

The following result provides a characterization of the limiting distribution of the S-gini

indices and also shows their consitency.

Proposition S1(A): Given Assumption 1, the following results holds for a �xed value

of �; such that 1 < � <1,

(i) Î�R
p! I�R and

p
N(Î�R � I�R)) ��(� � 1)

Z 1

0
(1� p)��2L(p)dp � N(0; V (Î�R))

(ii) Î�R
p! I�R and

p
N(Î�A � I�A)) G(1)� �(� � 1)

Z 1

0
(1� p)��2G(p)dp � N(0; V (Î�A))

(iii) Ŵ � p! W � and

p
N(Ŵ � �W �)) �(� � 1)

Z 1

0
(1� p)��2G(p)dp � N(0; V (Ŵ �)):

We denote by V̂ (:) the estimate of the variance of the index using the average of the

squared estimated in
uence function, so that for instance,

V̂ (Ŵ �) =
1

N

NX
i=1

�̂i(Ŵ
�)2

Proposition S1(B): Given the conditions of Proposition 1(A),

V̂ (Î�R)
p! V (Î�R);

V̂ (Î�A)
p! V (Î�A)

V̂ (Ŵ �)
p! V (Ŵ �)
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1.0.2 E-Gini indices

Proposition E1(A) Given Assumption 1, and assuming that I�R, I
�
A and W

� are all

strictly positive then the following results hold,

(i) Î�R
p! I�R and,

p
N(Î�R � I�R) ) �2�(I�R)1��

Z 1

0
(p� L(p))��1L(p)dp

� N(0; V (Î�R));

(ii) Î�A
p! I�A and,

p
N(Î�A � I�A) ) 2�(I�A)

1��
Z 1

0
(�p�G(p))��1(pG(1)� G(p))dp

� N(0; V (Î�A));

(iii) Ŵ � p! W� and,

p
N(Ŵ� �W �) ) 2G(1)� 2�(I�A)1��

Z 1

0
(�p�G(p))��1(G(p)� pG(1))dp

� N(0; V (Ŵ�)):

Again the variances can be expressed in terms of the in
uence functions which are,

�i(I
�
A) = �2�(I�A)1��

Z 1

0
(�p�G(p))��1(�i(p;G)� p(Yi � �))dp

�i(W
�) = 2(Yi � �) + �i(I�A)

�i(I
�
R) =

1

�
�i(I

�
A)�

I�R
�̂
(Yi � �̂)

Then the variances can be estimated using,

V̂ (Ŵ�) =
1

N

NX
i=1

�̂i(W
�)2

V̂ (Î�A) =
1

N

NX
i=1

�̂i(I
�
A)
2

V̂ (Î�R) =
1

N

NX
i=1

�̂i(I
�
R)
2
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where the �̂ are � with unknowns replaced by the relevant estimates. Appendix B

indicates how these in
uence functions can be estimated for a particular sample.

Proposition E1(B): Given Assumption 1,

V̂ (Î�R)
p! V (Î�R);

V̂ (Î�A)
p! V (Î�A)

V̂ (Ŵ�)
p! V (Ŵ�)

1.0.3 Poverty Indices

Proposition S2(A): Given Assumption 1, a �xed poverty level z; and 1 < � <1; then

P̂ �
p! P � and

p
N(P̂ � � P �) ) B(F (z))� �(� � 1)

z

Z 1

0
(1� p)��2 fQ(pF (z))pB(F (z)) + G(pF (z))g dp

� N(0; V (P̂ �))

Proposition S2(B): Given the conditions of Theorem 1 V̂ (P̂ �)
p! V (P̂ �):

We have separate result for the case where � = 1:

Proposition S3(A): Given Assumption 1, a �xed poverty level z; and � = 1; then

(i) P̂ �
p! P � and

p
N(P̂ � � P �) ) N

�
0;
1

z2

n
E
h
(z � Yi)2:1(Yi � z)

i
� E [(z � Yi):1(Yi � z))]2

o�
� N(0; V (P̂ �))

(ii)

V̂ (P̂ �) =
1

Nz2

NX
i=1

(z � Yi)2:1(Yi � z))� (P̂ �)2
p! V (P̂ �)

Proposition S3(B): Given the conditions of Theorem 1 then for � = 1; V̂ (P̂ �)
p!

V (P̂ �):
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Finally for the Poverty index based on the E-gini index we have the following result.

Proposition E2(A): Given Assumption 1, a �xed poverty level z;and 1 < � <1; then

P̂�
p! P� and

p
N(P̂� � P�) ) B(F (z))� 1

z
G(F (z))� 2B(F (z))

+
1

z
[T zE]

1
�
�1
Z 1

0
(pG(F (z))�G(pF (z)))��1�(p; F (z))dp)

� N(0; V (P̂�)):

where,

T zE =
Z 1

0
(pG(F (z))�G(pF (z)))�dp

and,

�(p; F (z)) = p (z �Q(pF (z)))B(F (z)) + pG(F (z))� G(pF (z)):

Proposition E2(B): Given the conditions of Theorem 1 V̂ (P̂�)
p! V (P̂�):
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2 Proofs

Note that we use a result concerning the quantile process.

Lemma A4: Given the Assumption 1, the following results hold,

(i) sup jF̂ (y)� F (y)j a:s:! 0 and in the space D([yl; yu]) (the space of cadlag functions),

p
N(F̂ � F )) B�F

which is a Brownian Bridge with covariance between the process at x and z given

by the expression in (1) with p = F (x) and q = F (z). The pointwise in
uence

function is given by,

�i(x; Q̂) = 1(Yi � x)� F (x)

(ii) sup jQ̂(p)�Q(p)j a:s:! 0 and in l1(0; 1) (the space of uniformly bounded real functions

on (0; 1)) we have,
p
N(Q̂�Q)) � B

f(Q)

where the the pointwise in
uence function is given by,

�i(p; Q̂) = 1(Yi < Q(p))
p� 1
f(Q(p))

+ 1(Yi > Q(p))
p

f(Q(p))

The result in (i) are well known results for the empirical distribution function, see van

der Vaart and Wellner (1996). The results in (ii) combine the strong uniform convergence

result contained in Corollary 1.4.1 of Csorgo (1983), a weak convergence result such as

shown in Van der Vaart and Wellner (1996, page 387) and the in
uence function is derived

in Huber (1981, p. 56). See Csorgo (1983) for more details on quantile processes.

Proof of Lemma A1: (i) Note that ,

Ĝ(p)�G(p) =
Z p

0
(Q̂(t)�Q(t))dt:
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Consequently we have that,

sup
p
jĜ(p)�G(p)j = sup

p
j
Z p

0
(Q̂(t)�Q(t))dtj

� sup
p

Z p

0
sup
t2[0;p]

jQ̂(t)�Q(t)jdt

� sup
t2[0;1]

jQ̂(t)�Q(t)j sup
p

Z p

0
dt

= sup
t2[0;1]

jQ̂(t)�Q(t)j

= op(1)

using the result in Lemma A4(i). For the next result note that G = T (Q) is a linear

functional of Q such that,

T (Q)(p) =
Z p

0
Q(t)dt

and is therefore Hadamard di�erentiable at Q tangentially to C[0; 1] with Hadamard

derivative T 0 with

T 0( ~Q)(p) =
Z p

0

~Q(t)dt

for ~Q 2 C[0; 1]: Consequently,
p
N(Ĝ�G)) G

in l1(0; 1) where,

G(p) = �
Z p

0

B(t)
f(Q(t))

dt:

To get the in
uence function we have (using a change of variable from t to y) that,

�i(p;G) =
Z p

0
�i(t;Q)dt

=
Z p

0

 
1(Yi < Q(t))

t� 1
f(Q(t))

+ 1(Yi > Q(t))
t

f(Q(t))

!
dt

= �
Z yp

yl

1(Yi < y) (1� F (y)) dy +
Z yp

yl

1(Yi > y)F (y)dy

= �1(Yi < yp)
 Z yp

Yi
(1� F (y)) dy �

Z Yi

yl

F (y)dy

!
+ 1(Yi > yp)

Z yp

yl

F (y)dy

= (pyp �G(p))� 1(Yi < yp)(yp � Yi)
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after using integration by parts to show that,Z yp

yl

F (y)dy = yF (y)jypyl �
Z yp

yl

yf(y)dy

= ypF (yp)�G(p)

Then take the de�nition of G(p) and the facts that F (yp) = p and yp = Q(p) and the

result follows.(ii) For the LC we have that since L̂(p) = Ĝ(p)=�̂ then,

sup
p
jL̂(p)� L(p)j � 1

�̂
sup
p
jĜ(p)�G(p)j+ L(p)

�̂
j�� �̂j

p! 0

by result (i) and �̂
p! � with 0 < � <1 which follows from Assumption 1. Similarly,

p
N(L̂� L) =

1

�̂

p
N(Ĝ�G)� L

�̂

p
N(�̂� �)

) G
�
� L
�
G(1)

using the Slutsky Theorem (ST) the Continuous Mapping Theorem (CMT) and the fact

that,
p
N(�̂� �)) G(1)

since �̂ = Ĝ(1): To get the in
uence function we use the fact that,

L̂(p) =
Ĝ(p)

Ĝ(1)

so that by the product rule for di�erentiation,

�i(p;L) =
1

G(1)
�i(p;G)�

G(p)

G(1)2
�i(1;G)

=
1

�
�i(p;G)�

L(p)

�
(Yi � �)

using the fact that G(1) = �:Q.E.D.

Proof of Lemma A2: To do this we �rst write,

p
N(Ĝ(pF̂ (z))�G(pF (z))) =

p
N(Ĝ(pF (z))�G(pF (z)))

+
p
N(G(pF̂ (z))�G(pF (z)))

+
p
N
�
(Ĝ(pF̂ (z))�G(pF̂ (z)))� (Ĝ(pF (z))�G(pF (z)))

�
11



For the last term we have,

sup
p

���pN �
(Ĝ(pF̂ (z))�G(p(F̂ (z)))� (Ĝ(pF (z))�G(pF (z)))

����
= sup

p

�����pN
Z pF̂ (z)

pF (z)
(Q̂(t)�Q(t))dt

�����
� sup

p

���Q̂(p)�Q(p))���pN sup
p
jpF̂ (z)� pF (z)j

� sup
p

���Q̂(p)�Q(p))���pN jF̂ (z)� F (z)j
= op(1)

by Corollary 1.4.1 of Csorgo (1983) which implies that supp
���Q̂(p)�Q(p))��� p! 0 and

the usual Central Limit Theorem applied to
p
N jF̂ (z) � F (z)j. By a simple change of

variable we have that the �rst term converges weakly to Gaussian process by Lemma

A1, and that the in
uence function will take the form �i(pF (z); Ĝ). For the second term

we note that
p
N(pF̂ (z) � pF (z)) converges to a Gaussian process and has pointwise

in
uence function given by p�i(z; F̂ ) while, on the interval (0; 1) the function G(t) has a

derivative Q(t) which is continuous on [0; 1] and hence bounded and uniformly continuous

on (0; 1) then since for p 2 (0; 1); 0 < pF (z) < 1 so that by Lemma 3.9.25 of Van der

Vaart and Wellner (1996) implies that the map G(t) is Hadamard di�erentiable so that
p
N(G(pF̂ (z)) � G(pF (z))) converges weakly to a Gaussian process that had pointwise

in
uence function given by, Q(pF (z))p�i(z; F̂ ). Therefore the incluence function for
p
N(Ĝ(pF̂ (z))�G(pF (z))), is given by,

�i(pF (z); Ĝ) +Q(pF (z))p�i(z; F̂ ):

Q.E.D.

Proof of Lemma A3: Since T (H) =
R 1
0 (1 � p)��2H(p)dp is a linear functional

of H(p) it is trivially Hadarmard di�erentiable and for hn(p) ! h(p), tn ! 0 with

H(p) + tnhn(p), h(p) and H(p) in the class of continuous functions,

T (H + tnhn)� T (H)
tn

=
Z 1

0
(1� p)��2hn(p))dp

!
Z 1

0
(1� p)��2h(p))dp

12



so the result in (i) follows.

For [
R 1
0 (H(p))

� dp]1=� it su�ces to show that the (H(p))� de�ned as a mapping from

(0; 1) ! R for some �nite �, is Hadamard di�erentiable. Note that H(p) 2 [0;�] for

some �nite �. Note that the function,

g1(x) = x
� for x 2 [0;�] for some �nite �

is di�erentiable at x 2 [0;�] with derivative given by �x��1 which is uniformly continuous

on [0;�] and hence uniformly continuous and bounded on (0;�): Since for p 2 (0; 1) we

have that, 0 < H(p) < � then by Lemma 3.9.25 of Van der Vaart and Wellner (1996)

the mapping (H(p))� is Hadamard di�erentiable with linear functional derivative

� (H(p))��1 h(p)

for h in the class of continuous functions on [0; 1]. Then
R 1
0 (H(p))

� dp, being a linear

functional of a Hadamard di�erentiable function, is trivially Hadamard di�erentiable

with linear functional derivative,

Z 1

0
� (H(p))��1 h(p)dp

Since the latter is simply a real valued object (rather than a function) and since the

function,

g2(x) = (x)
1=�

is di�erentaible with derivative,

g02(x) = (1=�)(x)
(1=�)�1

we have that [
R 1
0 (H(p))

� dp]
1
� is Hadamard di�erentiable with linear functional derivative,

(
Z 1

0
(H(p))� dp)(1=�)�1

Z 1

0
(H(p))��1 h(p)dp:

Q.E.D.
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Lemma A5: For an in
uence curve �iwith estimate �̂iwith

j�̂i � �ij � �1Â1 +�2iÂ2 +�3Â3i +�4iÂ4i

then su�cient conditions for,

1

N

NX
i=1

�̂2i �
1

N

NX
i=1

�2i = op(1)

are that the following hold,

(i) Â1
p! 0 and j�1j is stochastically bounded;;

(ii) Â2
p! 0 and

��� 1
N

PN
i=1�

2
2i

��� is stochastically bounded;
(iii) 1

N

PN
i=1 Â

2
3i

p! 0 and j�3j is stochastically bounded;

(iv) 1
N

PN
i=1 Â

2
4i

p! 0 and 1
N

PN
i=1�

4
4i is stochastically bounded;

(v) 1
N

PN
i=1 �

2
i is stochastically bounded.

Proof: This follows from the fact that,����� 1N
NX
i=1

�̂2i �
1

N

NX
i=1

�2i

����� =

����� 1N
NX
i=1

(�̂i � �i)2 +
2

N

NX
i=1

�i(�̂i � �i)
�����

� 1

N

NX
i=1

(�̂i � �i)2

+2

 
1

N

NX
i=1

�2i

!1=2  
1

N

NX
i=1

(�̂i � �i)2
!1=2

and the conditions given with repeated use of the Cauchy Schwarz inequality. Q.E.D.

Proof of Proposition S1(A): Each of these results follow from Lemma A1 and Lemma

A3. In particular for (i),

jÎ�R � I�Rj � � sup
p
jL̂(p)� L(p)j

Z 1

0
(� � 1)(1� p)��2dp

= � sup
p
jL̂(p)� L(p)j = op(1)

14



using Lemma A1(ii). Also,

p
N(Î�R � I�R)) ��(� � 1)

Z 1

0
(1� p)��2L(p)dp � N(0; V (Î�R))

by Lemma A3 and the result in Lemma A3(ii). Exactly analogous arguments yield the

results in (ii) and (iii) using the result contained in Lemma A1. Q.E.D.

Proof of Proposition S1(B): We verify the conditions of Lemma A5. Consider �rst

�̂i(Ŵ
�) = �(� � 1)

Z 1

0
(1� p)��2�̂i(p; Ĝ)dp

and write,

�̂i(Ŵ
�)� �i(Ŵ �) =

4X
j=1

Tj

where,

T1 = �(� � 1)
Z 1

0
(1� p)��2p(Q̂(p)�Q(p))dp

T2 = ��(� � 1)
Z 1

0
(1� p)��2(Ĝ(p)�G(p))dp

T3 = ��(� � 1)
Z 1

0
(1� p)��2(1(Yi < Q̂(p))Q̂(p)� 1(Yi < Q(p))Q(p))dp

T4 = Yi�(� � 1)
Z 1

0
(1� p)��2(1(Yi < Q̂(p))� 1(Yi < Q(p)))dp

For the �rst term we have,

jT1j � sup
p
jQ̂(p)�Q(p)j�(� � 1)

Z 1

0
(1� p)��2pdp

= sup
p
jQ̂(p)�Q(p)j

= op(1)

using Lemma A4(ii). Similarly using Lemma A1(i),

jT2j � sup
p
jĜ(p)�G(p)j�(� � 1)

Z 1

0
(1� p)��2pdp

= op(1)
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Next,

jT3j = �(� � 1)
�����
Z 1

F̂ (Yi)
(1� p)��2Q̂(p)dp�

Z 1

F (Yi)
(1� p)��2Q(p)dp

�����
� �(� � 1)

�����
Z 1

F̂ (Yi)
(1� p)��2Q̂(p)dp�

Z 1

F̂ (Yi)
(1� p)��2Q(p)dp

�����
+�(� � 1)

�����
Z 1

F̂ (Yi)
(1� p)��2Q(p)dp�

Z 1

F (Yi)
(1� p)��2Q(p)dp

�����
� sup

p
jQ̂(p)�Q(p)j�(� � 1)

Z 1

0
(1� p)��2dp

+

������(� � 1)
Z F (Yi)

F̂ (Yi)
(1� p)��2Q(p)dp

�����
� sup

p
jQ̂(p)�Q(p)j� + sup

p
jQ(p)j sup

y
j(1� F̂ (y))��1 � (1� F (y))��1j

= op(1)

where the last line follows from Assumption 1, and the results in Lemma A4 using the

fact that the function g(x) = x��1 is uniformly continuous on [0; 1] for � > 1. Finally,

jT4j � Yi�(� � 1)
����Z 1

0
(1� p)��2(1(Yi < Q̂(p))� 1(Yi < Q(p)))dp

����
� Yi�

�����
Z F (Yi)

F̂ (Yi)
(� � 1)(1� p)��2dp

�����
� Yi sup

y
j(1� F̂ (y))��1 � (1� F (y))��1j:

This term the satis�es (ii) of Lemma A5 so that because all the other terms satisfy (i)

of Lemma A5 we have the result in (iii). The results in (i) and (ii) follow similarly. For

(ii),

j�̂i(I�A)� �i(I�A)j � j�̂� �j+ j�̂i(W �)� �i(W �)j

so that the result in (i) follows from (iii) and Lemma A5 using the fact that �̂�� = op(1):

For (i),

j�̂i(Î�R)� �i(I�R)j �
1

�̂
j�̂i(I�A)� �i(I�A)j+ j�i(I�A)j

����� 1�̂ � 1

�

�����
+

����� Î�R�̂
����� j�̂� �j+ jYi � �j

����� Î�R�̂ � I
�
R

�

�����
so that the result follows from (ii) and Lemma A5 using �̂ � � = op(1) the result of

Proposition S1(A)(i) and Assumption 1 which implies that E(jYi � �j2) <1. Q.E.D.
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Proof of Proposition E1(A): Consistency of all three indices follows simply from the

CMT. More speci�cally consider �rst the estimator,

Î�R = 2[
Z 1

0
(p� L̂(p))�dp] 1�

and consider the component (p � L̂(p))�. Note that p � L̂(p) 2 [0; 1]: Now consider the

function g(z) = z� for z 2 [0; 1] with � � 1 �xed. It is easy to show that for z1; z2 2 [0; 1];

jg(z1)� g(z2)j � �jz1 � z2j so that,

j(p� L̂(p))� � (p� L(p))�j � �jL̂(p)� L(p)j

so that,����Z 1

0
(p� L̂(p))�dp�

Z 1

0
(p� L(p))�dp

���� �
Z 1

0
j(p� L̂(p))� � (p� L(p))�jdp

� � sup jL̂(p)� L(p)j

= op(1)

using Lemma A1(ii) so that

Z 1

0
(p� L̂(p))�dp p!

Z 1

0
(p� L(p))�dp

Then it follows by the CMT that

Î�R = 2[
Z 1

0
(p� L̂(p))�dp] 1� p! 2[

Z 1

0
(p� L(p))�dp] 1� = I�R

For the other indices we use the CMT and ST and the facts that,

Î�A = �̂Î�R
p! �I�R = I

�
A

Ŵ � = 2�̂� Î�A
p! 2�� I�A = W�

In order to derive the limiting distribution results we use the result of Lemma A1(ii)

which implies that,

p
N
��
p� L̂(p)

�
� (p� L(p))

�
= �

p
N(L̂(p)� L(p))

) �L(p)

17



Therefore using Lemma A3,

p
N(Î�R � I�R) ) �2A(1=�)�1

Z 1

0
(p� L(p))��1L(p)dp

A =
Z 1

0
(p� L(p))�dp

The result in (i) follows upon noting that

2A(1=�)�1 = 2�21��(A1=�)1�� = 2�(2A1=�)1�� = 2�(I�R)
1��

For (ii) we note that

p
N(Î�A � I�A) = �̂

p
N(Î�R � I�R) + I�R

p
N(�̂� �)

) ��2A(1=�)�1
Z 1

0
(p� L(p))��1L(p)dp+ I�RG(1)

� 2�(I�A)
1��

Z 1

0
(�p�G(p))��1(pG(1)� G(p))dp

using the de�nition of L after some manipulations. The result for

Ŵ� = 2�̂� Î�A

follows similarly. Q.E.D.

Proof of Proposition E1(B): Write,

j�̂i(I�A)� �i(I�A)j � 2�(Î�A)
1��

7X
j=1

jTjj

+2�((Î�A)
1�� � (Î�A)1��)��i

18



where,

T1 =
Z 1

0

�
(�̂p� Ĝ(p))��1pQ̂(p)� (�p�G(p))��1pQ(p)

�
dp

T2 =
Z 1

0

�
(�̂p� Ĝ(p))��1Ĝ(p)� (�p�G(p))��1G(p)

�
dp

T3 =
Z 1

0

�
(�̂p� Ĝ(p))��1Q̂(p)� (�p�G(p))��1Q(p)

�
1(Yi < Q̂(p))dp

T4 =
Z 1

0

�
(�p�G(p))��1Q(p)(1(Yi < Q̂(p))� 1(Yi < Q(p))

�
dp

T5 = Yi

Z 1

0

�
(�̂p� Ĝ(p))��1 � (�p�G(p))��1

�
1(Yi < Q̂(p))dp

T6 = Yi

Z 1

0

�
(�p�G(p))��1(1(Yi < Q̂(p))� 1(Yi < Q(p))

�
dp

T7 =
Z 1

0

�
(�̂p� Ĝ(p))��1p�̂� (�p�G(p))��1p�

�
dp

��i =
Z 1

0
(�p�G(p))��1(�i(p;G)� p(Yi � �))dp

Because of the fact that 2�(Î�A)
1�� is stochastically bounded we must show that jTjj =

op(1) so that the conditions of Lemma A5 are satis�ed. To deal with T1 use the inequality,

jâb̂� abj = jâ� ajjb̂� bj+ jajjb̂� bj+ jbjjâ� aj

and the following facts,

sup
p
jQ(p)j < 1

sup
p
j(�p�G(p))��1j � � <1

sup
p
jp(Q̂(p)�Q(p))j � sup

p
j(Q̂(p)�Q(p)j = op(1)

which follow from Assumption 1 and Lemma A4(ii) and the fact that,

sup
p
j(�̂p� Ĝ(p))��1 � (�p�G(p))��1j = op(1)

This last result follows from Lemma A1(i) and the fact that the function g(x) = x��1 is

such that for 1 < � � 2 and x0; x00 2 [0; 1];

jg(x0)� g(x00)j � jx0 � x00j��1

while for � > 2;

jg(x0)� g(x00)j � (�� 1)jx0 � x00j

19



Then combining these results we have that,

jT1j �
Z 1

0
sup
p

���(�̂p� Ĝ(p))��1pQ̂(p)� (�p�G(p))��1pQ(p)��� dp
� sup

p

���(�̂p� Ĝ(p))��1pQ̂(p)� (�p�G(p))��1pQ(p)���
= op(1)

The same arguments apply to the term T2 and T7 using the results in Lemma A1. For

T3 and T5 the same arguments apply once we note that,

sup
p
1(Yi < Q̂(p)) � 1:

Next jT5j = Yiop(1) follows using the fact that,

sup
p
j(�p�G(p))��1Q(p)j <1

and,

j
Z 1

0

�
1(Yi < Q̂(p))� 1(Yi < Q(p))

�
dpj = jF̂ (Yi)� F (Yi)j

� sup
y
jF̂ (y)� F (y)j

= op(1)

which follows from Lemma A4(i). Finally by Proposition E1(A)(ii) we have that, (Î�A)
1���

(Î�A)
1�� = op(1) and since

j��i j � C1 + C2Yi

we have that condition (ii) of Lemma A5 is satis�ed by the term 2�((Î�A)
1���(Î�A)1��)��i :

The results for the other indices follow in a manner that is similar to the proof of (i) and

(ii) of Proposition E1(B). Q.E.D.

Proof of Proposition S2(A): Given,

P̂ � = F̂ (z)� 1
z
�(� � 1)

Z 1

0
(1� p)��2Ĝ(pF̂ (z))dp

and the fact that by Lemma A4(i),

p
N(F̂ (z)� F (z))) B(F (z))
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and the fact that by Lemma A2 and Lemma A3(i),

p
N
Z 1

0
(1�p)��2(Ĝ(pF̂ (z))�G(pF (z)))dp)

Z 1

0
(1�p)��2 fQ(pF (z))pB(F (z)) + G(pF (z))g dp:

The result then follows similarly to the proof of Proposition S1(A).Q.E.D.

Proof of Proposition S2(B): Note that,

j�̂i(P �)� �i(P �)j �
1

z

5X
j=1

Tj

where,

T1 =
����1(Yi � z)�(� � 1) Z 1

0
(1� p)��2p(Q̂(pF̂ (z))�Q(pF (z)))dp

����
T2 =

�����(� � 1) Z 1

0
(1� p)��2p(F̂ (z)Q̂(pF̂ (z))� F (z)Q(pF (z)))dp

����
T3 =

�����(� � 1) Z 1

0
(1� p)��2(Ĝ(pF̂ (z))�G(pF (z)))dp

����
T4 =

�����(� � 1) Z 1

0
(1� p)��21(Yi < Q̂(pF̂ (z)))(Q̂(pF̂ (z))�Q(pF (z)))dp

����
T5 =

�����(� � 1) Z 1

0
(1� p)��2Q(pF (z))(1(Yi < Q̂(pF̂ (z)))� 1(Yi < Q(pF (z))))dp

����
T6 =

����Yi�(� � 1) Z 1

0
(1� p)��2

�
1(Yi < Q̂(pF (z)))� 1(Yi < Q(pF (z))

�
dp
����

For the �rst term note that,

Q̂(pF̂ (z))�Q(pF (z)) = (Q̂(pF̂ (z))�Q(pF̂ (z)))� (Q(pF̂ (z))�Q(pF (z)))

so that,

sup
p
jQ̂(pF̂ (z))�Q(pF (z))j � sup

p
jQ̂(p)�Q(p)j+ sup

p
jQ(pF̂ (z))�Q(pF (z))j

By Lemma A4(ii) we have that,

sup
p
jQ̂(p)�Q(p)j = op(1)

Since Q is uniformly continuous on [0; 1] then for any � > 0 there is a � > 0 such that if

p0; p00 2 [0; 1] with jp0 � p00j < � then jQ(p0)�Q(p00)j < �: By Lemma A4(i) we have that
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F̂ (z)
p! F (z) so that with probability approaching 1, jpF̂ (z)� pF (z)j < � which implies

that with probability approaching 1,

sup
p
jQ(pF̂ (z))�Q(pF (z))j < �

and since � is arbitrary we have that,

sup
p
jQ(pF̂ (z))�Q(pF (z))j p! 0:

Given these facts,

T1 � 1(Yi � z) sup
p
jQ̂(pF̂ (z))�Q(pF (z))j�(� � 1)

Z 1

0
(1� p)��2pdp

= 1(Yi � z) sup
p
jQ̂(pF̂ (z))�Q(pF (z))j

which satis�es (ii) of Lemma A5. Similar arguments can be used for the terms T2 and

T3: Next, T4 � T1 since 1(Yi < Q̂(pF̂ (z))) is less than 1(Yi < z) so that T4 satis�es (ii) of

Lemma A5. For T5 we have that since Q(pF (z)) � z for p � 1 then

T5 � z

������(� � 1)
Z F (Yi)=F (z)

F̂ (Yi)=F̂ (z)
(1� p)��2dp

�����
� z�

������
 
1� F̂ (Yi)

F̂ (z)

!��1
�
 
1� F (Yi)

F (z)

!��1������
� z� sup

y

������
 
1� F̂ (y)

F̂ (z)

!��1
�
 
1� F (y)

F (z)

!��1������
= op(1)

using the fact that z and � are �xed and arguments similar to those used in the proof of

Proposition S1(B). Therefore the term T5 satis�es (ii) of Lemma A5. The same argument

applies to the �nal term T6: Q.E.D.

Proof of Proposition S3(A) and S3(B): Because (recalling that � = 1),

E(
1

z
(z � Yi):1(Yi � z)) = P �

and,

0 � 1

z
(z � Yi):1(Yi � z)

� 1

z
(z � yl) � 1
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then we have by the Strong Law of Large Numbers that, P̂ �
a:s:! P �, so that P̂ �

p! P �:

Also by the Lindeberg-Levy Central Limit Theorem we have that,

p
N(P̂ � � P �) d! N(0; V (P̂ �))

where,

V (P̂ �) = E
�
1

z2
(z � Yi)2:1(Yi � z)

�
� (P �)2:

Finally the LLN implies that,

1

Nz2

NX
i=1

(z � Yi)2:1(Yi � z))
p! E

�
1

z2
(z � Yi)2:1(Yi � z)

�

so that we have,

V̂ (P̂ �)
p! V (P̂ �):

Q.E.D.

Proof of Proposition E2(A): The result follows similarly to Proposition S3(A) from

Lemma A1, A3 and A4 plus Lemma A2 which gives,

p
N
��
pĜ(F̂ (z))� Ĝ(pF̂ (z))

�
� (pG(F (z))�G(pF (z)))

�
) �(p; F (z))

Q.E.D.

Proof of Proposition E2(B): This result follows in a similar fashion to the proof of

Proposition E1(B) with adjustments similar to those used for the S-gini poverty index in

Proposition S2(B).Q.E.D.
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3 Computation of In
uence Curves

In this section we consider the issue of computing the in
uence curves for the inequality,

welfare and poverty indices. Throughout the appendix we use some of the facts discussed

in Section 3 of the text regarding the computation of the indices.. Recall that we are

using the shorthand p̂j = F̂ (yj) and that �̂j = p̂j � p̂j�1: Let p̂0 = 0: Then interval

(p̂j�1; p̂j]; Q̂(p) = yj: Also on the same interval,

Ĝ(p) = (p� p̂j�1)yj +
j�1X
l=1

�̂lyl = yjp+ aj

where by convention a1 = 0 so that on the interval (0; p̂1] we have that Ĝ(p) = py1: As

in the calculations performed in Section 4.3 we use the fact that,

Z 1

0
=

_NX
j=1

Z p̂j

p̂j�1

along with the de�nitions given above to calculate the estimates of the in
uence curves

for the indices.

3.1 In
uence Curves for S-Gini indices

The key component of the in
uence curve for the S-gini related indices is the term,

�(� � 1)
Z 1

0
(1� p)��2�̂i(p;G)dp =

4X
l=1

ÎSl

Then we are required to compute the following;

ÎS1 = �(� � 1)
Z 1

0
(1� p)��2pQ̂(p)dp

ÎS2 = ��(� � 1)
Z 1

0
(1� p)��2Ĝ(p)dp

ÎS3 = ��(� � 1)
Z 1

0
(1� p)��2Q̂(p)1(Yi < Q̂(p))dp

ÎS4 = �(� � 1)
Z 1

0
(1� p)��2Y:1(Yi < Q̂(p))dp

each of which is considered in turn:
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(i)

ÎS1 =

_NX
j=1

yj d̂
1
j

where,

d̂1j = ��
�
p̂j (1� p̂j)��1 � p̂j�1 (1� p̂j�1)��1

�
� ((1� p̂j)� � (1� p̂j�1)�)

(ii)

ÎS2 = �
_NX

j=1

�
d̂2j + d̂

3
jyj
�

where,

d̂2j = ��
�
(1� p̂j)��1 Ĝ(p̂j)� (1� p̂j�1)��1 Ĝ(p̂j�1)

�

d̂3j = �((1� p̂j)
� � (1� p̂j�1)�)

with

Ĝ(p̂j) =
jX
l=1

�̂lyl = p̂jyj + aj = p̂jyj+1 + aj+1

(iii)

ÎS3 = �
_NX

j=1

1(Yi < yj)yj d̂
4
j

d̂4j = ��
�
(1� p̂j)��1 � (1� p̂j�1)��1

�

(iv)

ÎS4 = Yi

_NX
j=1

1(Yi < yj)d̂
4
j

Then we can compute the S-gini in
uence curves using:

�̂i(Ŵ
�) =

4X
l=1

ÎSl

�̂i(Î
�
A) = (Yi � �̂)� �̂i(W �)

�̂i(Î
�
R) = � 1

�̂
�̂i(W

�)� 1

�̂
(Yi � �̂)(1� Î�R)
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3.2 In
uence curves for E-Gini indices

For the E-gini indices the key component has the form,

1

�

Z 1

0
�(�:p�G(p))��1

�
p(Yi � �̂)� �̂i(p;G)

�
dp =

1

�

4X
l=1

ÎEl

where

ÎE1 =
Z 1

0
�(�̂:p� Ĝ(p))��1p(Yi � �̂)dp

ÎE2 = �
Z 1

0
�(�̂:p� Ĝ(p))��1pQ̂(p)dp

ÎE3 =
Z 1

0
�(�̂:p� Ĝ(p))��1Ĝ(p)dp

ÎE4 =
Z 1

0
�(�̂:p� Ĝ(p))��1(Q̂(p)� Yi)1(Yi < Q̂(p))dp

(i)

ÎE1 = (Yi � �̂)
_NX

j=1

n
(ê1j � ê2j)1(�̂ 6= yj) + ê3j1(�̂ = yj)

o
where,

ê1j =
1

bj
((bj p̂j � aj)� p̂j � (bj p̂j�1 � aj)� p̂j�1)

ê2j =
1

b2j (�+ 1)

�
(bj p̂j � aj)�+1 � (bj p̂j�1 � aj)�+1

�
ê3j = �(�aj)��1(

p̂2j
2
�
p̂2j�1
2
)

with, bj = �̂� yj and aj =
Pj�1
l=1 �̂l(yl � yj)

(ii)

ÎE2 = �
_NX

j=1

yj
n
(ê1j � ê2j)1(�̂ 6= yj) + ê3j1(�̂ = yj)

o

(iii)
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ÎE3 =

_NX
j=1

yj
n
(̂e1j � ê2j)1(�̂ 6= yj) + ê3j1(�̂ = yj)

o

+

_NX
j=1

aj
n
e4j1(̂�̂ 6= yj) + ê5j1(�̂ = yj)

o

where,

ê4j =
1

bj
((bj p̂j � aj)� � (bj p̂j�1 � aj)�)

ê5j = �(�aj)��1(p̂j � p̂j�1)

(iv)

ÎE4 =

_NX
j=1

1(Yi < yj)(yj � Yi)
n
ê4j1(�̂ 6= yj) + ê5j1(�̂ = yj)

o

These four terms can be combined and simpli�ed as follows:

4X
l=1

ÎEl =

_NX
j=1

ĝ1j ĥ
1
j +

_NX
j=1

ĝ2j ĥ
2
j

where,

ĝ1j = (ê1j � ê2j)1(�̂ 6= yj) + ê3j1(�̂ = yj)

ĝ2j = ê4j1(�̂ 6= yj) + ê5j1(�̂ = yj)

ĥ1j = (Yi � �̂)

ĥ2j = (1(Yi < yj)(yj � Yi) + aj)

Then using these results we have the in
uence curves for the E-gini indices as:

�̂i(I
�
A) =

2�

�
(Î�A)

1��
4X
l=1

ÎEl (T1)

�̂i(W
�) = 2(Yi � �̂)� �̂i(I�A)

�̂i(I
�
R) =

1

�̂
�i(I

�
A)�

I�R
�̂
(Yi � �̂)
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3.3 In
uence Curves for Poverty Indices

As was the case with the calculation of the indices themselves we use a change of variables

and the fact that, Z F̂ (z)

0
=

N(z)X
j=1

Z p̂j

p̂j�1

For the S-gini related index we must compute,

�̂i(P
�) = �̂i(z;F )�

�(� � 1)
z

Z 1

0
(1� p)��2

�
pQ̂(pF̂ (z))�̂i(z;F ) + �̂i(pF̂ (z);G)

�
dp

= �̂i(z;F )�
�̂i(z;F )

z
�(� � 1)

Z 1

0
(1� p)��2pQ̂(pF̂ (z))dp

��(� � 1)
z

Z 1

0
(1� p)��2�̂i(pF̂ (z);G)dp

= �̂i(z;F )�
�̂i(z;F )

z
~IS1 �

1

z

5X
l=2

~ISl

where,

~IS1 = �(� � 1)
Z 1

0
(1� p)��2pQ̂(pF̂ (z))dp

~IS2 = �(� � 1)
Z 1

0
(1� p)��2pF̂ (z)Q(pF̂ (z))dp

~IS3 = ��(� � 1)
Z 1

0
(1� p)��2Ĝ(pF̂ (z))dp

~IS4 = ��(� � 1)
Z 1

0
(1� p)��2Q(pF̂ (z))1(Yi < Q̂(pF̂ (z)))dp

~IS5 = �(� � 1)
Z 1

0
(1� p)��2Yi:1(Yi < Q̂(pF̂ (z)))dp

We consider each term in turn and use a change of variables:

(i)

~IS1 =
�(� � 1)
F̂ (z)�

Z F̂ (z)

0
(F̂ (z)� p)��2pQ̂(p)dp

=
1

F̂ (z)�

N(z)X
j=1

yj ~d
1
j

where,

~d1j = ��
�
p̂j
�
F̂ (z)� p̂j

���1
� p̂j�1

�
F̂ (z)� p̂j�1

���1�
�
��
F̂ (z)� p̂j

��
�
�
F̂ (z)� p̂j�1

���
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(ii) Similarly,

~IS2 =
F̂ (z)�(� � 1)

F̂ (z)�

Z F̂ (z)

0
(F̂ (z)� p)��2pQ̂(p)dp

= F̂ (z)~IS1

(iii) Next

~IS3 = ��(� � 1)
F̂ (z)��1

Z F̂ (z)

0
(F̂ (z)� p)��2Ĝ(p)dp

= � 1

F̂ (z)��1

N(z)X
j=1

�
~d2j +

~d3jyj
�

where,

~d2j = ��
��
F̂ (z)� p̂j

���1
Ĝ(p̂j)�

�
F̂ (z)� p̂j�1

���1
Ĝ(p̂j�1)

�

~d3j = �
��
F̂ (z)� p̂j

��
�
�
F̂ (z)� p̂j�1

���

with

Ĝ(p̂j) =
j�1X
l=1

�̂lyl

(iv)

~IS4 = �
1

F̂ (z)��1

N(z)X
j=1

1(Yi < yj)yjd
4
j

where,

~d4j = ��
��
F̂ (z)� p̂j

���1
�
�
F̂ (z)� p̂j�1

���1�

(v)

~IS5 =
Yi

F̂ (z)��1

N(z)X
j=1

1(Yi < yj) ~d
4
j
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For the E-gini based poverty index the in
uence curve is given by

�̂i(P
�) = �1(Yi � z)�

1

z
�̂i(F (z);G)

+
1

z
[T̂ zE]

1
�
�1
Z 1

0
(pĜ(F̂ (z))� Ĝ(pF (z)))��1�i(pF (z); �)dp

= �1(Yi � z) + ~IE1 +
1

z�
[T̂ zE]

1
�
�1

7X
l=2

~IEl

where T̂ zE was already calculated in Section 6.2,

~IE1 = �1
z

�
(F̂ (z)z � aN(z)+1) + 1(Yi < z)(z � Yi)

�
~IE2 = z

Z 1

0
�(pĜ(F̂ (z))� Ĝ(pF̂ (z)))��1pdp

~IE3 = �
Z 1

0
�(pĜ(F̂ (z))� Ĝ(pF̂ (z)))��1pQ̂(pF̂ (z))dp

~IE4 =
�
F̂ (z)(z � �̂(z))� 1(Yi < z)(z � Yi)

� Z 1

0
�(pĜ(F̂ (z))� Ĝ(pF̂ (z)))��1pdp

~IE5 = �
Z 1

0
�(pĜ(F̂ (z))� Ĝ(pF̂ (z)))��1pF̂ (z)Q̂(pF̂ (z))dp

~IE6 =
Z 1

0
�(pĜ(F̂ (z))� Ĝ(pF̂ (z)))��1Ĝ(pF̂ (z))dp

~IE7 =
Z 1

0
�(pĜ(F̂ (z))� Ĝ(pF̂ (z)))��11(Yi < Q̂(pF̂ (z))(Q̂(pF̂ (z))� Yi)dp

(i) The term ~IE1 has already been given.

(ii)

~IE2 =
z

F̂ (z)2

N(z)X
j=1

n
(~e1j � ~e2j)1(�̂(z) 6= yj) + ~e3j1(�̂(z) = yj)

o
where,

~e1j =
1

bj

��
~bj p̂j � aj

��
p̂j �

�
~bj p̂j�1 � aj

��
p̂j�1

�
~e2j =

1

b2j (�+ 1)

��
~bj p̂j � aj

��+1
�
�
~bj p̂j�1 � aj

��+1�

~e3j = �(�aj)��1(
p̂2j
2
�
p̂2j�1
2
)

with, ~bj = �̂(z)� yj and aj =
Pj�1
l=1 �̂l(yl � yj)
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(iii)

~IE3 = �
1

F̂ (z)2

N(z)X
j=1

yj
n
(~e1j � ~e2j)1(�̂(z) 6= yj) + ~e3j1(�̂(z) = yj)

o

(iv)

~IE4 =
1

F̂ (z)2

�
F̂ (z)(z � �̂(z))� 1(Yi < z)(z � Yi)

�N(z)X
j=1

n
(~e1j � ~e2j)1(�̂(z) 6= yj) + ~e3j1(�̂(z) = yj)

o

(v)

~IE5 = �
F̂ (z)

F̂ (z)2

N(z)X
j=1

yj
n
(~e1j � ~e2j)1(�̂(z) 6= yj) + ~e3j1(�̂(z) = yj)

o
(vi)

~IE6 =
1

F̂ (z)

N(z)X
j=1

yj
n
(~e1j � ~e2j)1(�̂(z) 6= yj) + ~e3j1(�̂(z) = yj)

o

� 1

F̂ (z)

N(z)X
j=1

aj
n
~e4j1(�̂(z) 6= yj) + ~e5j1(�̂(z) = yj)

o

where,

~e4j =
1
~bj

��
~bj p̂j � aj

��
�
�
~bj p̂j�1 � aj

���
~e5j = �(�aj)��1(p̂j � p̂j�1)

(vii)

~IE7 =
N(z)X
j=1

1(Yi < yj)(yj � Yi)
n
~e4j1(�̂(z) 6= yj) + ~e5j1(�̂(z) = yj)

o

These terms can be combined as follows,

7X
l=2

~IEl =
N(z)X
j=1

~g1j
~h1j +

N(z)X
j=1

~g2j
~h2j
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where,

~g1j = (~e1j � ~e2j)1(�̂(z) 6= yj) + ~e3j1(�̂(z) = yj)

~g2j = ~e4j1(�̂(z) 6= yj) + ~e5j1(�̂(z) = yj)

~h1j =
1

F̂ (z)2

�
z � yj + F̂ (z)(z � �̂(z))� 1(Yi < z)(z � Yi)

�
~h2j =

F̂ (z)

F̂ (z)2
(1(Yi < yj)(yj � Yi) + aj)
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